考虑初始迎角影响的二维翼型跨声速颤振边界预测 -- 西北工业大学学报,2018,36(2):229-237
论文:2018,Vol:36,Issue(2):229-237
引用本文:
高国柱, 白俊强, 李国俊, 刘南, 李宇飞. 考虑初始迎角影响的二维翼型跨声速颤振边界预测[J]. 西北工业大学学报
Gao Guozhu, Bai Junqiang, Li Guojun, Liu Nan, Li Yufei. Flutter Boundary Prediction of a Two Dimensional Airfoil in Transonic Flight Regime with the Preset Angles of Attack[J]. Northwestern polytechnical university

考虑初始迎角影响的二维翼型跨声速颤振边界预测
高国柱1, 白俊强1, 李国俊1, 刘南2, 李宇飞1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 中航工业空气动力研究院, 辽宁 沈阳 110034
摘要:
目前大多数颤振问题研究主要采用零迎角条件,并未对迎角影响加以考虑,但是来流迎角对跨声速流场和气动力有一定影响。因此,基于非定常雷诺平均N-S方程(Reynolds-averaged Navier-Stokes,RANS)耦合结构运动方程,建立时域气动弹性分析方法,其中结构运动方程采用基于预估-校正技术的四阶隐式Adams线性多步法进行时域推进求解。对采用零度条件和考虑迎角影响的Isogai案例A模型的跨声速颤振边界进行研究。对跨声速颤振边界预测的结果表明:当0.73 ≤ Ma ≤ 0.76时,随着初始迎角增加,颤振速度减小,最大可减小12.5%;来流初始迎角增加使得跨声速凹坑程度较零度时有所削弱,凹坑范围扩大,自由来流为6°时,跨声速凹坑最低点的颤振速度较0°时增加了124%。因此,在对翼型开展颤振分析时,必须考虑初始迎角影响,从而准确分析颤振边界。同时,增加初始迎角可以作为一种延迟颤振的控制系统。
关键词:    迎角    时域    跨声速    颤振   
Flutter Boundary Prediction of a Two Dimensional Airfoil in Transonic Flight Regime with the Preset Angles of Attack
Gao Guozhu1, Bai Junqiang1, Li Guojun1, Liu Nan2, Li Yufei1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. AVIC Aerodynamics Research Institute, Shenyang 110034, China
Abstract:
Angle of attack has impact on transonic flow filed and aerodynamic force, but most of current researches on flutter use zero angle hypothesis, which has no consideration about angle of attack. Therefore, we use unsteady Reynold Averaged Navier-Stokes (RANS) equation and structural dynamic equation to establish the time domain aeroelastic analysis method. The solution in time domain is the fourth-order implicit Adams linear multi-step method which is based on prediction-correction method. The numerical simulations were used to analyze the transonic flutter boundary of Isogai Case A Model which was based on zero angle condition and nonzero angle respectively. The simulation results show that the reduced flutter speed decreases as the preset angle of attack decreases between 0.73 and 0.76, which shows a 12.5% decrease of the flutter speed at the farthest. Nonzero angle makes the transonic dip weaker and wider than fully turbulent flow. Changing in angle of attack of 6°, the flutter speed in the deepest position of transonic dip has increased by 124% compared to the flutter speed of 0°. Therefore, when flutter characters of airfoil is analyzed, the effects of the initial angle of attack must be taken into account in order to analyze flutter boundary correctly. In other words, increasing the angle of attack offers a way to control the system in terms of delaying flutter.
Key words:    angle of attack    flutter    transonic flow    time domain analysis   
收稿日期: 2017-04-22     修回日期:
DOI:
基金项目: 国家"973"计划(2014CB744804)资助
通讯作者:     Email:
作者简介: 高国柱(1991-),西北工业大学硕士研究生,主要从事飞行器气动弹性问题分析研究。
相关功能
PDF(3478KB) Free
打印本文
把本文推荐给朋友
作者相关文章
高国柱  在本刊中的所有文章
白俊强  在本刊中的所有文章
李国俊  在本刊中的所有文章
刘南  在本刊中的所有文章
李宇飞  在本刊中的所有文章

参考文献:
[1] Bendiksen O O. Review of Unsteady Transonic Aerodynamics:Theory and Applications[J]. Progress in Aerospace Sciences, 2011, 47:135-167
[2] Bendiksen O O. Transonic Flutter Characteristics of Advanced Fighter Wings[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Florida, 2015
[3] Cunningham A M. The Role of Non-Linear Aerodynamics in Fluid-Structure Interaction[C]//29th AIAA Fluid Dynamics Conference, 1998
[4] 叶正寅, 赵令诚. 亚音速、时间域内机翼的气动弹性分析方法[J]. 西北工业大学学报, 1989, 7(4):456-463 Ye Zhengyin, Zhao Lingcheng. Aeroelastic Characteristics of Wings in Subsonic Flow[J]. Journal of Northwestern Polytechnical University, 1989, 7(4):456-463(in Chinese)
[5] Edwards J W, Bennet R M, Whitlow W, et al. Time-Marching Transonic Flutter Solutions Including Angle-of-Attack Effects[J]. Journal of Aircraft, 1983,20(11):899-906
[6] Kholodar D B, Dowell E H. Behavior of Airfoil with Control Surface Freeplay for Nonzero Angles of Attack[J]. AIAA Journal, 1999, 37(5):651-653
[7] Dowell E, Tang D. Nonlinear Aeroelasticity and Unsteady Aerodynamics[C]//40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 2002
[8] Park Y, Yoo J, Lee I. Effects of Angle-of-Attack on the Aeroelastic Characteristics of a Wing with Freeplay[J]. Journal of Spacecraft and Rockets, 2006, 43(6):1419-1422
[9] Bichiou Y, Nuhait A, Abdelkefi A, et al. Unsteady Aeroelastic Behaviors of Rigid Airfoils with Preset Angles of Attack[J]. Journal of Vibration and Control, 2016, 22(4):1010-1022
[10] 叶正寅. 不同迎角下翼型的气动弹性性质研究[C]//首届全国航空航天领域中的力学问题学术研讨会, 成都, 2004:240-242 Ye Zhengyin. The Study of Aeroelastic Property of Airfoil at the Different Angles of Attack[C]//The 1st Proseminar about the Mechanical Problems in the Fields of Aeronautics and Aerospace, Chengdu, 2004:240-242(in Chinese)
[11] Zhang W, Ye Z. Effects of Angles of Attack on Flutter Characteristics of a Cropped Delta Wing[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, IL, 2008
[12] 张伟伟, 王忠波, 叶正寅, 等. 迎角对间隙舵面的非线性颤振特性影响研究[J]. 机械强度, 2011, 33(2):296-301 Zhang Weiwei, Wang Zhongbo, Ye Zhengyin, et al. Effect of Angle of Attack on Flutter Characteristics of a Control Surface with Free-Play Nonlinearity[J]. Journal of Mechanical Strength, 2011, 33(2):296-301(in Chinese)
[13] 刘畅畅, 刘子强, 季辰. 不同迎角的翼型气弹特性风洞试验研究[J]. 空气动力学学报, 2012,30(2):271-276 Liu Changchang, Liu Ziqiang, Ji Chen. Aeroelastic Characteristics of Airfoils at Different Angles of Attack in Wind Tunnel Testing[J]. Acta Aerodynamica Sinica, 2012,30(2):271-276(in Chinese)
[14] Alonso J, Jameson A. Fully-Implicit Time-Marching Aeroelastic Solutions[R]. AIAA-1994-0056
[15] Zhang Zhichao, Yang Shuichi, Liu Feng. Prediction of Flutter anf LCO by an Euler Method on Non-Moving Cartesian Grids with Boundary-Layer Corrections[R]. AIAA-2005-0833
[16] Davis S S. NACA 64A010(NASA AMES model) Oscillatory Pitching[R]. AGARD Report No. 702
[17] Thomas J P, Dowell E H, Hall K C. Nonlinear Inviscid Aerodynamic Effects on Transonic Divergence, Flutter, and Limit-Cycle Oscillations[J]. AIAA Journal, 2002, 40(4):638-646
[18] 叶正寅, 张伟伟, 史爱明,等. 流固耦合力学基础及其应用[M]. 哈尔滨:哈尔滨工业大学出版社, 2010:171-173 Ye Zhengyin, Zhang Weiwei, Shi Ai'ming, et al. Fundamentals of Fluid-Structure Coupling and Its Application[M]. Harbin, Harbin Institute of Technology Press, 2010:171-173(in Chinese)
[19] Koji Isogai. On the Transonic-Dip Mechanism of Flutter of a Sweptback Wing[J]. AIAA Journal, 1979, 17(7):793-795
[20] Koji Isogai. Transonic Dip Mechanism of Flutter of a Sweptback Wing:Part Ⅱ[J]. AIAA Journal, 1981, 19(9):1240-1242
[21] Alonso J, Jameson A. Fully-Implicit Time-Marching Aeroelastic Solutions[R]. AIAA-1994-0056
[22] Zhang Zhichao, Yang Shuichi, Liu Feng. Prediction of Flutter and LCO by an Euler Method on Non-Moving Cartesian Grids with Boundary-Layer Corrections[R]. AIAA-2005-833
[23] Timme S, Badcock K J. Searching for Transonic Aeroelastic Instability Using an Aerodynamic Model Hierarchy[R]. Technical Report Deliverable D2.3, UK:University of Liverpool, 2009
[24] 刘南. 机翼跨声速非线性颤振及高效分析方法研究[D]. 西安:西北工业大学,2016 Liu Nan. Investigation of Transonic Nonlinear Flutter and Efficient Analysis Approach[D]. Xi'an, Northwestern Polytechnical University, 2016(in Chinese)
[25] Bendiksen O O. Transonic Stabilization Laws for Unsteady Aerodynamics and Flutter[R]. AIAA-2012-1718