高速铣削工艺参数对AM50A镁合金铣削力和表面形貌的影响 -- 西北工业大学学报,2018,36(1):124-131
论文:2018,Vol:36,Issue(1):124-131
引用本文:
张宏基, 葛媛媛, 唐虹, 史耀耀, 李增生. 高速铣削工艺参数对AM50A镁合金铣削力和表面形貌的影响[J]. 西北工业大学学报
Zhang Hongji, Ge Yuanyuan, Tang Hong, Shi Yaoyao, Li Zengsheng. Effect of High Speed Milling Process Parameters on the Milling Force and Surface Topography of AM50A Magnesium Alloy[J]. Northwestern polytechnical university

高速铣削工艺参数对AM50A镁合金铣削力和表面形貌的影响
张宏基1,2, 葛媛媛1, 唐虹2, 史耀耀2, 李增生1
1. 榆林学院 现代设计与先进制造技术研究中心, 陕西 榆林 719000;
2. 西北工业大学 机电学院, 陕西 西安 710072
摘要:
在给定高速铣削工艺参数范围内,分析讨论了AM50A镁合金高速铣削时主轴转速、进给速度、铣削深度和铣削宽度对铣削力的影响规律;同时通过对AM50A镁合金已加工表面粗糙度测量,研究了铣削参数对表面粗糙度的影响规律。采用析因实验设计的方法对AM50A镁合金进行了高速铣削实验,由实验结果分析可知,高速铣削AM50A镁合金时,对铣削力有显著影响的铣削参数为铣削深度、铣削宽度和进给速度,且铣削力与铣削参数之间存在非线性特征规律;在实验给定的铣削工艺参数范围内随主轴转速的增大铣削力呈下降趋势。铣削参数对表面质量的影响表现为,在铣削深度和进给速度一定的情况下随着主轴转速的增大AM50A镁合金表面质量变好,随着进给速度增大,AM50A镁合金铣削表面质量变差。当主轴转速大于12 000 r/min、铣削深度小于0.2 mm、进给速度小于400 mm/min的铣削参数条件下易获得较高的铣削表面质量。
关键词:    AM50A镁合金    高速铣削    铣削力    实验设计    表面粗糙度   
Effect of High Speed Milling Process Parameters on the Milling Force and Surface Topography of AM50A Magnesium Alloy
Zhang Hongji1,2, Ge Yuanyuan1, Tang Hong2, Shi Yaoyao2, Li Zengsheng1
1. Research Center of Contemporary Design and Advanced Manufacturing Technology, Yulin University, Yulin 719000, China;
2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Within the scope of high speed milling process parameters, analyzed and discussed the effects of spindle speed, feed rate, milling depth and milling width on milling forces in the process of high speed milling of AM50A magnesium alloy. At the same time, the influence of milling parameters on the surface roughness of AM50A magnesium alloy has been revealed by means of the measurement of surface roughness and surface micro topography. High speed milling experiments of AM50A magnesium alloy were carried out by factorial design. Form the analysis of experimental results, The milling parameters, which have significant influence on milling force in high speed milling of AM50A magnesium alloy, are milling depth, milling width and feed speed, and the nonlinear characteristics of milling force and milling parameters. The milling force decreases with the increase of spindle in the given mill parameters. For the effects of milling parameters on surface quality of the performance, in the milling depth and feeding speed under certain conditions with the spindle speed increases the surface quality of AM50A magnesium alloy becomes better with the feed speed increases the surface quality becomes poor. When the spindle speed is greater than 12000r/min, the milling depth is less than 0.2mm, and the feed speed is less than 400mm/min, the milling surface quality can be obtained easily.
Key words:    AM50A magnesium alloy    high speed milling    milling force    design of experiments    surface roughness   
收稿日期: 2017-03-12     修回日期:
DOI:
基金项目: 陕西省工业科技攻关项目(2016-GY027)资助
通讯作者:     Email:
作者简介: 张宏基(1983-),西北工业大学博士研究生,主要从事先进复合材料成型工艺及性能调控机理研究。
相关功能
PDF(1662KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张宏基  在本刊中的所有文章
葛媛媛  在本刊中的所有文章
唐虹  在本刊中的所有文章
史耀耀  在本刊中的所有文章
李增生  在本刊中的所有文章

参考文献:
[1] 胡雨伸, 袁玉兰, 周亮. 基于铣削参数的ZM5材料铣削温度试验[J]. 机械制造与自动化, 2010, 39(5):44-45 Hu Yushen, Yuan Yulan, Zhou Liang. Experiment of Temperature in Milling Material ZM5 Based on Cutting Parameter[J]. Machine Building & Automation, 2010, 39(5):44-45(in Chinese)
[2] Ruslan M S, Othman K, Ghani J A, et al. Surface Roughness of Magnesium Alloy AZ91D in High Speed Milling[J]. Journal Technologies, 2016, 78(6/9):115-119
[3] Lu L, Hu S, Liu L, et al. High Speed Cutting of AZ31 Magnesium Alloy[J]. Journal of Magnesium and Alloys, 2016, 4(2):128-134
[4] Pu Z, Umbrello D, Dillon O W, et al. Finite Element Modeling of Microstructural Changes in Dry and Cryogenic Machining of AZ31B Magnesium Alloy[J]. Journal of Manufacturing Processes, 2014, 16(2):335-343
[5] Salahshoor M, Guo Y B. Cutting Mechanics in High Speed Dry Machining of Biomedical Magnesium-Calcium Alloy Using Internal State Variable Plasticity Model[J]. International Journal of Machine Tools and Manufacture, 2011, 51(7):579-590
[6] 刘龙飞, 胡少华, 卢立伟. 铣削速度对AZ31镁合金高速铣削切屑形成的影响[J]. 稀有金属, 2016(7):654-659 Liu Longfei, Hu Shaohua, Lu Liwei. Sawtooth Chip of AZ31 Magnesium Alloy under High-Speed Cutting and Different Cutting Velocities[J]. Chinese Journal of Rare Metals, 2016(7):654-659(in Chinese)
[7] 富宏亚, 张翔, 韩振宇,等. 微径球头铣刀铣削力建模与仿真[J]. 计算机集成制造系统, 2011, 17(7):1448-1453 Fu Hongya, Zhang Xiang, Han Zhenyu, et al. Modeling and Simulation of Micro-Ball-End Milling Forces[J]. Computer Integrated Manufacturing Systems, 2011, 17(7):1448-1453(in Chinese)
[8] Guo M, Wang R, Zhu X. High Speed Machining of Magnesium Alloy[J]. Ordnance Material Science and Engineering, 2009(6):92-96
[9] Bhowmick S, Lukitsch M J, Alpas A T. Dry and Minimum Quantity Lubrication Drilling of Cast Magnesium Alloy(AM60)[J]. International Journal of Machine Tools and Manufacture, 2010, 50(5):444-457
[10] Mandal N, Doloi B, Mondal B. Force Prediction Model of Zirconia Toughened Alumina(ZTA) Inserts in Hard Turning of AISI 4340 Steel Using Response Surface Methodology[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(9):1589-1599
[11] Lim B S. Fuzzy Regression Modeling for Tool Performance Prediction and Degradation Detection[J]. International Journal of Neural Systems, 2010, 20(05):405-419