一种求解定常无黏流场的混合延拓方法 -- 西北工业大学学报,2018,36(1):57-65
论文:2018,Vol:36,Issue(1):57-65
引用本文:
乔磊, 白俊强, 邱亚松, 华俊, 徐家宽. 一种求解定常无黏流场的混合延拓方法[J]. 西北工业大学学报
Qiao Lei, Bai Junqiang, Qiu Yasong, Hua Jun, Xu Jiakuan. A Blended Continuation Method for Solving Steady Inviscid Flow[J]. Northwestern polytechnical university

一种求解定常无黏流场的混合延拓方法
乔磊1, 白俊强1, 邱亚松1, 华俊1,2, 徐家宽1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 中国航空工业集团公司 中国航空研究院, 北京 100012
摘要:
定常流场的求解在现代飞行器气动设计中有着广泛的应用,流场求解效率对飞行器优化的效率有着重要影响。提出了一种将拉普拉斯(Laplace)算子与伪时间推进法相结合的混合方程延拓方法,用于求解定常无黏流动问题。在定常流动问题中,流场通常被初始化为均匀来流条件,然后再开始迭代求解。这就导致初始残差仅在靠近边界的网格处不为零。针对这一特点,通过拉普拉斯算子作为额外耗散措施,加速非线性迭代在求解初期的收敛速度。在非线性迭代的后期,为避免拉普拉斯算子的过度耗散,混合延拓方法逐步过渡为由伪时间项主导。为构造完整的非线性迭代策略,同时给出了延拓系数的初始化、递推和终止方法。最后,将所构造的方法应用于有限元欧拉方程求解器中,分别通过GAMM鼓包内流算例和NACA0012外流算例,在亚声速和跨声速条件下对计算效率进行了验证。数值实验结果表明,混合延拓方法在跨声速算例中可以比单纯拉普拉斯延拓提高1/3~1/4收敛速度,相对于单纯时间推进法的效率提升更为显著。
关键词:    计算流体力学    欧拉方程    隐式格式    牛顿-拉弗森方法    定常流动    方程延拓   
A Blended Continuation Method for Solving Steady Inviscid Flow
Qiao Lei1, Bai Junqiang1, Qiu Yasong1, Hua Jun1,2, Xu Jiakuan1
1. Northwestern Polytechnical University, School of Aeronautics, Xi'an 710072, China;
2. China Aeronautical Establishment, Aviation Industry Corporation of China, Beijing 100012, China
Abstract:
Steady flow field solving is wieldly used in aircraft aerodynamic design, efficiency of steady flow field solving has great influnence on efficiency of aircraft aerodynamic design. A continuation method that blended Laplacian operator and pseudo time marching method for solving steady inviscid flow problem is proposed. In steady flow problem, the field is usually initialized as an uniform field before starting iteration. This resulted in the fact that the initial residual in only nonzero on wall boundary. Based on this feature, Laplacian operator is introduced to accelarate convergence at the starting stage of nonlinear solving. At the ending stage of nonlinear solving, the blended continuation term is biased to pseduo time marching method to avoid over dissipation graduately. To establish a complete continuation method, the starting, evolution and termination method are also described. At last, the proposed continuation method is implemented in a finite element solver, and tested aginst GAMM channel and NACA0012 foil subsonic and transonic cases. Numerical test results confirmed that the blended continuation method could get an efficency improvement about 1/3 to 1/4 comparing with stand alone Laplacian continuation and much more better than pure pseudo time marching method.
Key words:    computational fluid dynamics    Euler equations    implicit scheme    Newton-Raphson method    steady flow    equation continuation   
收稿日期: 2017-03-07     修回日期:
DOI:
基金项目: 国家自然基金(11502211、11602199)资助
通讯作者:     Email:
作者简介: 乔磊(1988-),西北工业大学博士研究生,主要从事计算流体力学研究。
相关功能
PDF(2117KB) Free
打印本文
把本文推荐给朋友
作者相关文章
乔磊  在本刊中的所有文章
白俊强  在本刊中的所有文章
邱亚松  在本刊中的所有文章
华俊  在本刊中的所有文章
徐家宽  在本刊中的所有文章

参考文献:
[1] 贡伊明, 张伟伟, 刘溢浪. 非定常求解的内迭代初值对计算效率的影响研究[J]. 西北工业大学学报, 2016, 34(1):11-17 Gong Yiming, Zhang Weiwei, Liu Yilang. Reaserching How Initial Value if Internal Iteration Impacts on Computational Efficieny in Unsteady Flow Solving[J]. Journal of Northwestern Polytechnical University, 2016, 34(1):11-17(in Chinese)
[2] Geuzaine P. Newton-Krylov Strategy for Compressible Turbulent Flows on Unstructured Meshes[J]. AIAA Journal, 2001, 39(3):528-531
[3] Dennis J, Schnabel R. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M]. Society for Industrial and Applied Mathematics, 1996
[4] Brown D A, Zingg D W. Advances in Homotopy Continuation Methods in Computational Fluid Dynamics[R]. AIAA-2013-2944
[5] Lyra P R M, Morgan K. A Review and Comparative Study of Upwind Biased Schemes for Compressible Flow Computation. PartⅢ:Multidimensional Extension on Unstructured Grids[J]. Archives of Computational Methods in Engineering, 2002, 9(3):207-256
[6] Kelley C T, Liao L Z, Qi L, et al. Projected Pseudotransient Continuation[J]. SIAM Journal on Numerical Analysis, 2008, 46(6):3071-3083
[7] Young D P, Melvin R G, Bieterman M B, et al. Global Convergence of Inexact Newton Methods for Transonic Flow[J]. International Journal for Numerical Methods in Fluids, 1990, 11(8):1075-1095
[8] Hicken J, Buckley H, Osusky M, et al. Dissipation-Based Continuation:a Globalization for Inexact-Newton Solvers[R]. AIAA-2011-3237
[9] Pollock S. A Regularized Newton-Like Method for Nonlinear PDE[J]. Numerical Functional Analysis and Optimization, 2015, 36(11):1493-1511
[10] Persson P O, Peraire J. Sub-Cell Shock Capturing for Discontinuous Galerkin Methods[R]. AIAA-2006-0112
[11] Kuzmin D, Moller M, Gurris M. Flux-Corrected Transport:Principles, Algorithms,and Applications[M]. 2nd Ed. Springer, 2012:193-238
[12] Balay S, Abhyankar S, Adams M F, et al. PETSc Users Manual[R]. ANL-95/11-Revision 3.6, 2015
[13] Amestoy P R, Duff I S, L'Excellent J-Y, et al. A Fully Asynchronous Multi-Frontal Solver Using Distributed Dynamic Scheduling[J]. SIAM Journal on Matrix Analysis and Applications, 2001, 23(1):15-41
[14] Bangerth W, Hartmann R, Kanschat G. DealⅡ——a General Purpose Object Oriented Finite Element Library[J]. ACM Trans on Mathematical Software, 2007, 33(4):1-27
[15] Delchini M O, Ragusa J C, Berry R A. Entropy-Based Viscous Regularization for the Multi-Dimensional Euler Equations in Low-Mach and Transonic Flows[J]. Computers & Fluids, 2015, 118:225-244
[16] Žaloudek M, FoǐJ, Fürst J. Numerical Solution of Compressible Flow in a Channel and Blade Cascade[J]. Flow, Turbulence and Combustion, 2006, 76(4):353-361
[17] Janda M, Kozel K, Liska R. Hyperbolic Problem:Theory, Numnerics, Applications[C]//8th International Conference on Magdeburg, 2001:563-572
[18] Vassberg J, Jameson A. In Pursuit of Grid Convergence, Part I:Two Dimensional Euler Solutions[R]. AIAA-2009-4114
相关文献:
1.廖飞, 叶正寅.曲线网格下精确四阶精度有限体积紧致方法[J]. 西北工业大学学报, 2012,30(6): 836-840