论文:2017,Vol:35,Issue(6):1096-1104
引用本文:
王立波, 唐矗, 杨超. 大展弦比飞翼刚弹耦合运动稳定性分析[J]. 西北工业大学学报
Wang Libo, Tang Chu, Yang Chao. Dynamic Stability Analysis of a Flying Wing Considering the Rigid-Elastic Coupling Effects[J]. Northwestern polytechnical university

大展弦比飞翼刚弹耦合运动稳定性分析
王立波1,2, 唐矗3, 杨超2
1. 中航工业第一飞机设计研究院 总体气动设计研究所, 陕西 西安 710089;
2. 北京航空航天大学 航空科学与工程学院, 北京 100191;
3. 中航工业第一飞机设计研究院 强度设计研究所, 陕西 西安 710089
摘要:
推导了平均体轴系下弹性飞机的刚弹耦合运动方程,然后基于小扰动假设将其线化,综合有理函数拟合得到的时域非定常气动力模型,建立了可用以弹性飞机刚弹耦合运动学稳定性分析的状态空间模型。对某大展弦比飞翼布局无人机的纵向刚弹耦合运动稳定性进行了建模与计算。结果显示随着飞行速度的增加,机翼对称一弯模态与短周期运动模态发生耦合,使得飞翼在较小的飞行速度下就出现自由体颤振现象,表明结构弹性会对飞翼纵向动力学稳定性造成显著的影响,在大展弦比飞翼设计过程中应当引起重视。研究了在刚弹耦合状态空间建模过程中,截取弹性模态阶次的多少对稳定性分析结果的影响。分析了结构刚度对飞翼刚弹耦合运动稳定性的影响。计算表明刚弹耦合失稳速度随机翼刚度的增加呈近似线性增加的趋势。在相同速度水平下,弹性飞翼的短周期频率和阻尼值均随着机翼刚度的增加而增加。
关键词:    气动弹性    弹性飞机    动力学稳定性    飞翼   
Dynamic Stability Analysis of a Flying Wing Considering the Rigid-Elastic Coupling Effects
Wang Libo1,2, Tang Chu3, Yang Chao2
1. The General Configuration and Aerodynamic Design Department, AVIC the First Aircraft Institute, Xi'an 710089, China;
2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
3. The Aircraft Strength Design and Research Department, AVIC the First Aircraft Institute, Xi'an 710089, China
Abstract:
The motion equation of a flexible aircraft have been derived based on the mean axes, which consider the rigid-body degrees of freedom as well as the elastic degrees of freedom of aircraft. The unsteady aerodynamics in time domain is computed by rational function approximation. The linear state-space model of the aircraft is then established based on the small disturbance theory, which could be used for flight dynamic stability analysis of the flexible aircrafts. For instance, the longitudinal stability analysis of a flying wing with large-aspect-ratio wings has been modeled and analyzed. The root locus indicates that an unsteady phenomenon called the free-body-flutter appears at a low speed, because the first structural bending mode will interact with the short-period mode, which means the structural flexibility will have a great influence on the flight stability of the flying wing, and that should be considered during the aircraft design procedure. Moreover, the effects by the number of elastic modes that have been used to establish the state-space model and the stiffness of the wing structure on the flight stability have also been studied. The result indicates that the stability critical speed of the flying wing will increase with the stiffness linearly. The frequency and damping of the short-period mode of the flying wing will also increase with the stiffness, if the velocity is frozen.
Key words:    aeroelasticity    flexible aircraft    dynamic stability    flying wing   
收稿日期: 2017-01-25     修回日期:
DOI:
通讯作者:     Email:
作者简介: 王立波(1985-),中航工业第一飞机设计研究院高级工程师,主要从事飞机气动布局设计及气动弹性设计研究。
相关功能
PDF(1570KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王立波  在本刊中的所有文章
唐矗  在本刊中的所有文章
杨超  在本刊中的所有文章

参考文献:
[1] Liebeck R H. Design of the Blended wing Body Subsonic Transport[J]. Journal of Aircraft, 2004, 41(1):10-25
[2] Bartley-Cho J D, Henderson J A. Design and Analysis of Hilda/Aei Aeroelastic Wind Tunnel Model[R]. AIAA-2008-7191
[3] Patil M J. Nonlinear Aeroelastic Analysis of Joined-Wing Aircraft[R]. AIAA-2003-1487
[4] MöNnich W, Dalldorff L. A New Flying Qualities Criterion for Flying Wings[R]. AIAA-1993-3668
[5] Love M H, Zink P S, Wieselmann P A, et al. Body Freedom Flutter of High Aspect Ratio Flying Wings[R]. AIAA-2005-1947
[6] Dusto A R. An Analytical Method for Predicting the Stability and Control Characteristics of Large Elastic Airplanes at Subsonic and Supersonic Speeds Part I:Analysis[R]. Agard-Cp-46, 1970
[7] Chevalier H L, Dornfeld G M, Schwanz R C. An Analytical Method for Predicting the Stability and Control Characteristics of Large Elastic Airplanes at Subsonic and Supersonic Speeds Part Ii:Application[R]. Agard-Cp-46, 1970
[8] Roskam J. Comments, Interpretation and Application of a Method for Predicting Aerodynamic Characteristics of Large Flexible Airplanes[R]. Agard-Cp-46, 1970
[9] Schwanz R C, Cerra J J, Blair M. Dynamic Modeling Uncertainly Affecting Control System Design[R]. AIAA-1984-1057
[10] Van Schoor M C, Von Flotow A H. Aeroelastic Characteristics of a Highly Flexible Aircraft[J]. Journal of Aircraft, 1990, 27(10):901-908
[11] Swain R L, Fullman D G. A Unique Formulation of Elastic Airplane Longitudinal Equations of Motion[R]. AIAA-1977-403
[12] Meirovitch L. Hybrid State Equation of Motion for Flexible Bodies in Terms of Quasi-Coordinates[J]. Journal of Guidance, 1991, 14(5):1008-1013
[13] Tuzcui. On the Stability of Flexible Aircraft[J]. Aerospace Science and Technology 2008, 12:376-384
[14] 陈志敏, 徐敏, 陈刚. 弹性飞行器动力学与控制研究现状和发展趋势[J]. 中国民航飞行学院学报, 2005, 16(1):3-7 Chen Zhimeng, Xu Mmeng, Chen Gang. Research Status and Development Trend of the Dynamics and Control of Elastic Aircraft[J]. Journal of Civil Aviation Flight University of China, 2005, 16(1):3-7(in Chinese)
[15] 谢长川. 飞行器气动弹性稳定性静/动耦合理论与试验研究[D]. 北京:北京航空航天大学, 2009 Xie Changqua. Statics/Dynamics Coupling Theory and Test Study of Aircraft Aeroelastic Stability[D]. Beijing, Beihang University, 2009(in Chinese).
[16] Waszak M R, Schmidt D K. On the Flight Dynamics of Aeroelastic Vehicles[R]. AIAA-1986-2077
[17] 宋晨. 飞机颤振主动抑制控制方法及对策研究[D]. 北京:北京航空航天大学, 2010 Song C. Methodology and Strategy for Active Flutter Suppression of Airplane[D]. Beijing, Beihang University, 2010(in Chinese).
[18] Roger K L. Airplane Math Modeling Methods for Active Control Design[R]. Structural Aspects of Active Controls, Agard Cp-228,1997:4.1-4.11
[19] Kapel M. Design for Active and Passive Flutter Suppression and Gust Alleviation[R]. Nasa R-3482, 1980
[20] 宗捷. 非定常气动力有理函数近似及非线性颤振研究[D]. 北京:北京航空航天大学, 1996 Zong Jie. Research on the Rational Function Approximation of the Unsteady Aerodynamics and Nonlinear Flutter Analysis[D]. Beijing, Beihang University, 1996(in Chinese)
相关文献:
1.许军, 马晓平.飞翼无人机静气弹参数分析及操纵效率计算[J]. 西北工业大学学报, 2016,34(5): 747-753