论文:2017,Vol:35,Issue(6):1013-1019
引用本文:
安新宇, 宋保维, 马聪聪. 一种基于涡激振动的新型锚链发电装置的设计与建模分析[J]. 西北工业大学学报
An Xinyu, Song Baowei, Ma Congcong. The Design and Mathematical Modeling of a Novel Power Generation Anchor Based on Vortex Induced Vibration[J]. Northwestern polytechnical university

一种基于涡激振动的新型锚链发电装置的设计与建模分析
安新宇, 宋保维, 马聪聪
西北工业大学 航海学院, 陕西 西安 710072
摘要:
提出了一种可以将流体动能转换为电能的新型锚链装置设计构想。该装置由一个附着于锚链的钝头体和固连于钝头体的压电悬臂梁构成,钝头体在来流的作用下产生横向振动,并在其尾流区激发漩涡,而压电悬臂梁则在其尾流中弯曲。利用力分解模型建立了钝头体的横向振动模型,采用欧拉-伯努利梁的弯曲方程建立了压电悬臂梁的弯曲变形模型,将两部分模型结合起来研究装置的运动情况,得到了悬臂梁的弯曲挠度和装置的发电性能数学模型,证明了装置的可行性。在圆柱直径D为100 mm,流速为0.5 m/s,负载电阻为200 kΩ,梁长为3D时平均输出功率可达到7.3 μW。该模型可以为设计和优化锚链装置提供指导。
关键词:    概念设计    流速    涡激振动    压电悬臂梁    力分解模型   
The Design and Mathematical Modeling of a Novel Power Generation Anchor Based on Vortex Induced Vibration
An Xinyu, Song Baowei, Ma Congcong
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
A novel anchor chain system that can convert fluid dynamic energy into electrical power is presented conceptually in this paper. It consists of a bluff body attached to the anchor chain and a piezoelectric cantilever beam fixed to the bluff body. The bluff body undergoes vortex induced vibration (VIV) under the action of the incoming flow and sheds vortices periodically in its wake zone which forces the beam to bend. The transverse motion model of the bluff body was established with Sarplaya's lift decomposition model. The bending model of the piezoelectric cantilever beam was established using the bending equation of the Euler-Bernoulli beam. The two-part model was used to study the transverse motion of the device, the deflection of the piezoelectric cantilever beam and the generated power. The results show that the device is feasible. In the case of a cylindrical diameter D be 100 mm, an incoming flow velocity be 0.5 m/s, a load resistance be 200 kΩ, and a beam length be 3D, the average output power can be 7.3 μW. The model can provide guidance for designing and optimizing the anchor chain system.
Key words:    conceptual design    flow velocity    vortex induced vibration    piezoelectric cantilever beam    lift decomposition model   
收稿日期: 2017-01-18     修回日期:
DOI:
基金项目: 国家自然科学基金(51179159、61572404)资助
通讯作者:     Email:
作者简介: 安新宇(1989-),西北工业大学博士研究生,主要从事涡激振动、流固耦合和海洋能采集研究。
相关功能
PDF(1457KB) Free
打印本文
把本文推荐给朋友
作者相关文章
安新宇  在本刊中的所有文章
宋保维  在本刊中的所有文章
马聪聪  在本刊中的所有文章

参考文献:
[1] Muralt P. Ferroelectric Thin Films for Micro-Sensors and Actuators:a Review[J]. Journal of Micromechanics and Microengineering, 2000,10(2):136-146
[2] Renno J M, Daqaq M F, Inman D J. On the Optimal Energy Harvesting from a Vibration Source[J]. Journal of Sound and Vibration,2009,320(1):386-405
[3] Roundy S, Wright P K. A Piezoelectric Vibration Based Generator for Wireless Electronics[J]. Smart Materials and Structures,2004,13(5):1131-1142
[4] Bernitsas M M, Raghavan K, Ben-Simon Y, et al. VIVACE(Vortex Induced Vibration for Aquatic Clean Energy):A New Concept in Generation of Clean and Renewable Energy from Fluid Flow[J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the ASME,2008,130(4):619-636
[5] Bernitsas M M, Ben-Simon Y, Raghavan K, et al. The VIVACE Converter:Model Tests at High Damping and Reynolds Number Around 105[J]. Journal of Offshore Mechanics and Arctic Engineering,2009,131(1):403-414
[6] Vinod A, Kashyap A, Banerjee A, et al. Augmenting Energy Extraction from Vortex Induced Vibration Using Strips of Roughness/Thickness Combinations[C]//Marine Energy Technical Symposium, Washington D C, 2013
[7] Mehmood A, Abdelkefi A, Hajj M R, et al. Piezoelectric Energy Harvesting from Vortex-Induced Vibrations of Circular Cylinder[J]. Journal of Sound and Vibration,2013,332(19):4656-4667
[8] Akaydin H D, Elvin N, Andreopoulos Y. Energy Harvesting from Highly Unsteady Fluid Flows Using Piezoelectric Materials[J]. Journal of Intelligent Material Systems and Structures,2010,21(13):1263-1278
[9] Pobering S, Schwesinger N. A Novel Hydropower Harvesting Device[C]//International Conference on MEMS, NANO and Smart Sysems, Alberta, 2004
[10] Sarpkaya T. Fluid Forces on Oscillating Cylinders[J]. NASA STI/Recon Technical Report A,1978,78(3):275-290
[11] Weaver Jr W, Timoshenko S P, Young D H. Vibration Problems in Engineering[M]. John Wiley & Sons,1990
[12] Erturk A, Inman D J. On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters[J]. Journal of Intelligent Material Systems and Structures,2008, 19(19):1311-1325
[13] Meitzler A, Tiersten H F, Warner A W, et al. IEEE Standard on Piezoelectricity[M]. American National Standards Institute, 1987
[14] Erturk A, Inman D J. A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters[J]. Journal of Vibration and Acoustics,2008,130(4):1257-1261
[15] 孙飞. 涡激振动潮流能转换装置获能原理研究[D]. 青岛:中国海洋大学, 2013 Sun Fei. Study on Mechanism of VIV in Tidal Current Energy Conversion Device[D]. Qingdao, Ocean University of China, 2013(in Chinese)
[16] 王军雷. 基于流机电多物理场耦合下涡激振动能量收集模型及特性[D]. 重庆:重庆大学,2014 Wang Junlei. Modeling and Characteristics of the Vortex-Induced Vibration Piezoelectric Energy Harvesting Based on the Aero-Electromechanical Multi-Physics Field Coupling[D]. Chongqing, Chongqing University, 2014(in Chinese)
[17] Khalak A, Williamson C H K, Khalak A, Williamson C H K. Motions, Forces and Mode Transitions in Vortex-Induced Vibrations at Low Mass-Damping[J]. Journal of Fluids & Structures, 1999, 13(7/8), 813-851