基于RANS和LES方法的管道消声器二次噪声特性研究方法 -- 西北工业大学学报,2017,35(6):998-1004
论文:2017,Vol:35,Issue(6):998-1004
引用本文:
王红建, 张锐, 罗望. 基于RANS和LES方法的管道消声器二次噪声特性研究方法[J]. 西北工业大学学报
Wang Hongjian, Zhang Rui, Luo Wang. Investigation on Characteristics of Secondary Noise for the Duct[J]. Northwestern polytechnical university

基于RANS和LES方法的管道消声器二次噪声特性研究方法
王红建, 张锐, 罗望
西北工业大学 航空学院, 陕西 西安 710072
摘要:
管道消声器的性能会因内部气流产生的二次噪声而削弱。利用简单扩张腔消声器入口和出口有无过渡圆弧2种构型,基于雷诺平均(RANS)和大涡模拟(LES)的方法,研究管道消声器的二次噪声特性。首先,通过声学分析对这2种消声器的传递损失进行对比研究;然后,基于CFD流场分析,获得消声器腔内气流的湍流强度与压力脉动分布;最后,根据流场分析结果计算获得腔内宽频噪声与近场噪声强度。研究结果显示,消声器的二次噪声特性较大程度地依赖于其几何构型,其中进出口的过渡圆弧虽然对消声器的传递损失影响较小,但却显著减小了腔内流场的剪切层速度梯度和湍流强度,从而较大程度地减弱了以宽频噪声为主的气流二次噪声强度。
关键词:    消声器    二次噪声    宽频噪声    传递损失    大涡模拟   
Investigation on Characteristics of Secondary Noise for the Duct
Wang Hongjian, Zhang Rui, Luo Wang
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The performance of the duct muffler can be reduced due to the secondary noise of the inner flow. Using two structures of simple expanded mufflers with and without transitional arc, the characteristics of secondary noise for the duct muffler are investigated based on RANS and LES. Firstly, the comparison study for the two mufflers is conducted by the acoustic analysis; then, the distributions of turbulent strength and fluctuation of pressure of the inner flow are investigated by CFD analysis; finally, the broadband noise and local noise strength are computed based on fluid analysis results. Investigation results show, the characteristics of the secondary noise for a duct muffler are largely dependent on the geometry of the muffler. The effects of the transitional arc on the performance of transmission loss for the muffler are little, while it can decrease to a great degree the gradient of the speed of shear layer and the strength of the turbulence for the inner flow, and further to reduce strength of the secondary noise dominated by broadband noise for the flow.
Key words:    muffler    secondary noise    broadband noise    transmission loss    LES   
收稿日期: 2017-02-01     修回日期:
DOI:
基金项目: 航空科学基金(20161553014)资助
通讯作者:     Email:
作者简介: 王红建(1968-),西北工业大学副教授,主要从事气动噪声预测及控制技术研究。
相关功能
PDF(3070KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王红建  在本刊中的所有文章
张锐  在本刊中的所有文章
罗望  在本刊中的所有文章

参考文献:
[1] 钟绍华, 金国栋, 张选国,等. 消声器优化设计及其性能分析方法的研究[J]. 内燃机工程, 2005, 26(1):55-58 Zhang Shaohua, Jin Guodong, Zhang Xuanguo, et al. Research on Optimization Design of Muffler and Its Performance Simulation Method[J]. Chinese Internal Combustion Engine Engineering, 2005, 26(1):55-58(in Chinese)
[2] 齐海政, 刘献栋. 汽车排气消声器仿真方法探讨[J]. 噪声与振动控制, 2006, 26(6):73-76 Qi Haizheng, Liu Xiandong. Discussion on Automobile Exhaust Muffler Simulation Method[J]. Noise and Vibration Control, 2006, 26(6):73-76(in Chinese)
[3] 徐航手, 季振林, 康钟绪. 抗性消声器传递损失预测的三维时域计算方法[J]. 振动与冲击, 2010, 29(4):107-110 Xu Hangshou, Ji Zhenlin, Kang Zhongxu. Three-Dimensional Time-Domain Computational Approach for Predicting Transmission Loss of Reactive Silencers[J]. Journal of Vibration and Shock, 2010, 29(4):107-110(in Chinese)
[4] Crocker M J, Young C J. Acoustical Analysis, Testing, and Design of Flow-Reversing Muffler Chambers[J]. Journal of the Acoustical Society of America, 1976, 60(5):1111-1118
[5] Craggs A. A Finite Element Method for Damped Acoustic Systems:An Application to Evaluate the Performance of Reactive Mufflers[J]. Journal of Sound and Vibration, 1976, 48(3):377-392
[6] Antebas A G, Denia F D, Pedrosa A M, et al. A Finite Element Approach for the Acoustic Modeling of Perforated Dissipative Mufflers with Non-Homogeneous Properties[J]. Mathematical and Computer Modelling, 2013, 57(7/8):1970-1978
[7] Selamet A, Radavich P M. The Effect of Length on the Acoustic Attenuation Performance of Concentric Expansion Chambers:an Analytical, Computational and Experimental Investigation[J]. Journal of Sound and Vibration, 1997, 201(4):407-426
[8] Selamet A, JI Z L. Acoustic Attenuation Performance of Circular Expansion Chambers with Offset Inlet/Outlet:I. Analytical Approach[J]. Journal of Sound and Vibration, 1998, 213(4):601-617
[9] 潘国培, 杨碧君, 贺华,等. 不同内插管扩张式消声器声学性能分析[J]. 噪声与振动控制, 2013, 33(6):177-179 Pan Guopei, Yang Bijun, He Hua, et al. Acoustic Performance Analysis of Expansion Chamber Mufflers with Different Intubation Tubes[J]. Noise and Vibration Control, 2013, 33(6):177-179(in Chinese)
[10] Yang Y, Sun H. Three-Dimensional Aeroacoustic Numerical Simulation of Flow Induced Noise of Mufflers[J]. Communication in Computer & Information Science, 2014, 405:276-286
[11] Broatch A, Margot X, Gil A, et al. A CFD Approach to the Computation of the Acoustic Response of Exhaust Mufflers[J]. Journal of Computational Acoustics, 2005, 13(2):301-316
[12] Parsani M, Ghorbaniasl G, Lacor C. Validation and Application of an High-Order Spectral Difference Method for Flow Induced Noise Simulation[J]. Journal of Computational Acoustics, 2011, 19(3):241-268
[13] Lee J W, Jang G W. Topology Design of Reactive Mufflers for Enhancing Their Acoustic Attenuation Performance and Flow Characteristics Simultaneously[J]. International Journal for Numerical Methods in Engineering, 2012, 91(5):552-570
[14] Chen J, Shi X. CFD Numerical Simulation of Exhaust Muffler[C]//Proceedings-20117th International Conference on Computational Intelligence and Security, 2011:1438-1441
[15] Proudman I. The Generation of Noise by Isotropic Turbulence[J]. Proc Roy Soc A, 1952, 214:119