论文:2017,Vol:35,Issue(6):990-997
引用本文:
余培汛, 白俊强, 杨海, 潘凯. 耦合RANS/LES模型与LEE方程的气动噪声混合预测方法[J]. 西北工业大学学报
Yu Peixun, Bai Junqiang, Yang Hai, Pan Kai. Hybrid Aero-Acoustics Prediction Method Coupled with RANS/LES Model and LEE Equation[J]. Northwestern polytechnical university

耦合RANS/LES模型与LEE方程的气动噪声混合预测方法
余培汛1,2, 白俊强1, 杨海2, 潘凯2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 中国飞机强度研究所 航空声学与动强度航空科技重点实验室, 陕西 西安 710065
摘要:
耦合湍流速度生成模型与线化欧拉方程,建立了气动噪声混合预测方法。该混合方法的湍流速度生成采用了非定常求解NS方程方式,为声传播方程提供了可靠的源项。声源的传播计算选用线化欧拉方程,其时空离散采用低色散低耗散高阶格式,远场边界选用了无分裂形式的理想匹配层边界条件。流场网格与声场网格的湍流速度信息交换采用了高阶插值算法。针对空腔标模M219的气动噪声预测,分别采用了统计声源与声传播(SNGR)方法、RANS/LES+LEE方法进行了计算分析。通过对比声源的分布、量级,以及监测点的声压曲线及声压级频谱曲线,分析可得出:RANS/LES+LEE方法能准确捕捉空腔各阶模态的声压级峰值。经数值模拟结果与实验结果的对比,表明RANS/LES+LEE方法相比于SNGR方法更适合模拟空腔这类流激振荡现象引起的声传播问题。
关键词:    湍流速度生成模型    线化欧拉方程    气动噪声    统计声源与声传播    RANS/LES    空腔   
Hybrid Aero-Acoustics Prediction Method Coupled with RANS/LES Model and LEE Equation
Yu Peixun1,2, Bai Junqiang1, Yang Hai2, Pan Kai2
1. School of Aeronautics, Northwestern Polytechnic University, Xi'an 710072, China;
2. Laboratory of Aeronautical Acoustics and Dynamics, Aircraft Strength Research Institute of China, Xi'an 710065, China
Abstract:
Coupling the turbulent velocity generation model and the linearized Euler equation, a hybrid method of aerodynamic noise prediction is established. The unsteady NS method based on the RANS/LES model is applied to the turbulent velocity generation model of the hybrid method, which provides a reliable source term for the acoustic propagation equation. Linear Euler Equation is selected for the propagation of the sound source. The low-dispersion, low-dissipation and high-order scheme is used in the spatial-temporal discretization, and the Perfect Match Layer boundary condition for the far-field boundary is selected. The high-order interpolation algorithm is adopted for the turbulent velocity information exchange between the flow field grid and the acoustic field grid. The aerodynamic noise prediction of the M219 cavity model was conducted by using the statistical sound source with sound propagation (SNGR) method and the RANS/LES+LEE method respectively. By comparing the distribution and magnitude of sound source, the sound pressure curve and sound pressure level frequency-spectrum curve of the monitoring points, it can be concluded that the RANS/LES+LEE method can accurately capture the peak value of the sound pressure level. Compared with the experimental results, it is shown that the RANS/LES+LEE method is more suitable for simulating the acoustic propagation problems caused by flow-induced oscillations in the cavity than the SNGR method.
Key words:    aeroacoustics    Euler equation    flow fields    large eddy simulation    Mach number    velocity distribution   
收稿日期: 2017-01-16     修回日期:
DOI:
基金项目: 航空科学基金(2016ZD23016)资助
通讯作者:     Email:
作者简介: 余培汛(1986-),西北工业大学硕士研究生,主要从事计算气动声学研究。
相关功能
PDF(4142KB) Free
打印本文
把本文推荐给朋友
作者相关文章
余培汛  在本刊中的所有文章
白俊强  在本刊中的所有文章
杨海  在本刊中的所有文章
潘凯  在本刊中的所有文章

参考文献:
[1] Paliath Umesh, Premasuthan Sachin. Large Eddy Simulation for Jet Installation Effects[R]. AIAA-2013-2137
[2] Busch E Rebecca. Aeroacoustics of a High-Fidelity CFD Calculation of a Counter-Roataing Open Rotor in Take-Off Conditions[R]. AIAA-2013-2202
[3] Pouangue A Fosso. Subsonic Jet Noise Simulations Using both Structured and Unstructured Grids[J]. AIAA Journal, 2015, 53(1):1024-1035
[4] Colin Y, Wlassow F. Installation Effects on Contra-Rotating Open Rotor Noise at High-Speed[R]. AIAA-2014-2971
[5] Wang L. Detached-Eddy Simulation of Landing Gear Noise[R]. AIAA-2013-2069
[6] 洪志亮,高鸽,景晓东,等. 一种预测平板尾迹噪声的时域无网格方法[J]. 航空学报, 2015, 36(11):3501-3514 Hong Zhiliang, Gao Ge, Jing Xiaodong, et al. A Grid-Less Time Domain Method for Plate Trailing Edge Noise Prediction[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3501-3514(in Chinese)
[7] 龙双丽,聂宏. 飞机起落架气动噪声数值仿真与实验[J]. 航空学报, 2012, 33(6):1002-1013 Long Shuangli, Nie Hong. Simulation and Experiment on Aeroacoustic Noise Characteristics of Aircraft Landing Gear[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):1002-1013(in Chinese)
[8] 招启军,徐国华. 基于CFD/Kirchhoff方法的直升机旋翼高速脉冲噪声分析[J]. 计算物理, 2006, 23(2):137-143 Zhao Qijun, Xu Guohua. A Numerical Study of High-Speed Impulsive Noise of Helicopter Rotors with the CFD/Kirchhoff Method[J]. Chinese Journal of Computational Physics, 2006, 23(2):137-143(in Chinese)
[9] Fang Q, Hu X D, Li D K. Absorbing Boundary Conditions for Nonlinear Euler and Navier-Stokes Equations Based on the Perfectly Matched Layer Technique[J]. Journal of Computational Physics, 2008, 227:4398-4424
[10] Strelets M. Detached Eddy Simulation of Massively Separated Flows[R]. AIAA-2001-0879
[11] Henshaw M J de C. M219 Cavity Case, Verification and Validation Data for Computational Unsteady Aerodynamics[R], RT0-TR-26,2000
[12] 余培汛, 白俊强. 尺度适应模型用于模拟射流流量对空腔压力脉动的抑制[J]. 声学学报,2015, 40(1):71-81 Yu Peixun, Bai Junqiang. Suppression Effect of Jet Flow on Pulsating Pressure of Cavity Using Scale-Adaptive Simulation Model[J]. Acta Acoustic, 2015, 40(1):71-81(in Chinese)