论文:2017,Vol:35,Issue(6):983-989
引用本文:
张露, 李杰, 牟永飞, 张恒. 基于DES类混合方法模拟后台阶分离流动[J]. 西北工业大学学报
Zhang Lu, Li Jie, Mou Yongfei, Zhang Heng. Simulating Unsteady Flow over a Backward Facing Step with Advanced Detached-Eddy-Simulation Methods[J]. Northwestern polytechnical university

基于DES类混合方法模拟后台阶分离流动
张露, 李杰, 牟永飞, 张恒
西北工业大学 航空学院, 陕西 西安 710072
摘要:
DES类混合方法结合了大涡模拟和传统RANS方法各自的优势,在一定程度上达到了计算精度和计算效率的统一。采用基于两方程SST模型的DDES、IDDES方法,结合高精度的空间离散格式,对雷诺数为36 000的后台阶流动进行了数值模拟研究。计算结果表明:IDDES方法和2种DDES方法都能够捕捉到后台阶分离涡结构的发展过程;在台阶下游分离区域,相对于DDES方法,IDDES能够捕捉到更加丰富的湍流涡结构;IDDES方法预测的下游流动再附位置与实验结果一致,而URANS得到分离区域较小,预测的再附位置更靠近上游;几种DES方法得到的速度剖面和雷诺应力分布没有明显差异,URANS结果与实验值差异较大。
关键词:    流动分离    流场    湍流模型    非定常流动    数值模拟   
Simulating Unsteady Flow over a Backward Facing Step with Advanced Detached-Eddy-Simulation Methods
Zhang Lu, Li Jie, Mou Yongfei, Zhang Heng
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The detached-eddy-simulation (DES) method combines the strong points of large-eddy-simulation (LES) and Reynolds-averaged numerical simulation (RANS), which takes into the computational accuracy and computational efficiency. The delayed detached-eddy-simulation (DDES) method and improved delayed detached-eddy-simulation (IDDES) method based on the k-ω shear stress transport (SST) model with the improved fifth-order WENO scheme are applied to simulated the unsteady flow over back facing step with the Reynolds number of 36 000. The numerical results are compared with available experimental data. The computational results show both the DDES and IDDES method can simulate the unsteady vortex-shedding. The IDDES method can capture more vortex structures than the two DDES methods in the downstream separated region, the predicted reattachment location by the IDDES method agrees well with the measurement. The DDES and IDDES methods make no significant differences in the averaged streamwise velocity and RMS fluctuations at different streamwise locations, but the numerical result by unsteady RANS deviate from the measurements.
Key words:    flow separation    flow fields    turbulence model    unsteady flow    computer simulation   
收稿日期: 2017-02-01     修回日期:
DOI:
基金项目: 国家自然科学基金(11172240)、国家重点基础研究发展计划(2015CB755800)、航空科学基金(2014ZA53002)与CFD前沿技术项目(2015-F-016)资助
通讯作者:     Email:
作者简介: 张露(1985-),西北工业大学博士研究生,主要从事理论与计算流体力学研究。
相关功能
PDF(2477KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张露  在本刊中的所有文章
李杰  在本刊中的所有文章
牟永飞  在本刊中的所有文章
张恒  在本刊中的所有文章

参考文献:
[1] Spalart P R, Jou W H, Strelets M, et al. Comments on the Feasibility of Les for Wings, and on a Hybrid RANS/LES Approach[C]//Proceeding of the First AFOSR International Conference on DNS/LES, Columbus, Greyden, 1997:137-147
[2] Spalart P R, Deck S, Shur M, et al. A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195
[3] Shur M L, Spalart P R, Strelets M, et al. A Hybrid RANS-LES Approach with Delayed-DES and Wall-Modeled LES Capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649
[4] Spalart P R, Deck S, Shur M, et al. A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195
[5] Menter F R, Kuntz M. Adaptation of Eddy-Viscosity Turbulence Models to Unsteady Separated Flow Behind Vehicles[C]//The Aerodynamics of Heavy Vehicles:Trucks, Buses and Trains, 2004:339-352
[6] Travin A, Shur M, Strelets M, et al. Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows[C]//Advances in LES of Complex Flows, 2006:239-254
[7] Deck S. Recent Improvements in the Zonal Detached Eddy Simulation (ZDES) Formulation[J]. Theoretical and Computational Fluid Dynamics. 2012, 26(6):523-550
[8] Menter F R. Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 1994, 32(8):1598-1605
[9] Gritskevich M S, Garbaruk A V, Schutze J, et al. Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model Flow[J]. Turbulence and Combustion, 2012, 88(3):431-449
[10] Borges R, Carmona M, Costa B, et al. An Improved Weighted Essentially Non-Oscillatory Scheme for Hyperbolic Conservation Laws[J]. Journal of Computational Physics, 2008, 337:3191-3211
[11] Jiang G S, Shu C W. Efficient Implementation of Weighted ENO Schemes[J]. Journal of Computational Physics, 1996, 126(1):202-222
[12] 张露, 李杰. 基于RANS/LES方法的超声速底部流场数值模拟[J]. 航空学报, 2017, 38(1):1201022 Zhang Lu, Li Jie. Numerical Simulations of Supersonic Base Flow Field Based on RANS/LES Approaches[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):120102(in Chinese)
[13] Driver D W, Seegmiller H L. Features of a Reattaching Turbulent Shear Layer in Divergent Channel Flow[J]. AIAA Journal, 1985, 23(2):163-171
[14] Jeong J, Hussain F. On the Identification of a Vortex[J]. Journal of Fluid Mechanics, 1995, 285(2):69-94
相关文献:
1.夏露, 张欣, 杨梅花, 米百刚.飞翼布局翼型气动隐身综合设计[J]. 西北工业大学学报, 2017,35(5): 821-826
2.张乐, 周洲, 许晓平, 王红波.飞翼无人机保形进排气系统动力数值模拟与流场特性分析[J]. 西北工业大学学报, 2015,33(3): 353-360
3.邱华, 龚婷婷, 熊姹, 郑龙席.带二次流增推尾喷管的脉冲爆震发动机数值模拟研究[J]. 西北工业大学学报, 2015,33(2): 271-277
4.李嘉, 李华聪, 符江锋, 王淑红.一体式航空燃油离心泵内流场数值模拟[J]. 西北工业大学学报, 2015,33(2): 278-283
5.黄闯, 罗凯, 党建军, 李代金.流域径向尺度对自然超空泡的影响规律[J]. 西北工业大学学报, 2015,33(6): 936-941
6.孟祥尧, 邱志明, 张鹏, 宋保维.水中化学羽流的建模和数值模拟分析[J]. 西北工业大学学报, 2014,32(5): 775-780
7.王刚, 曾铮, 叶正寅.混合非结构网格下壁面最短距离的快速计算方法[J]. 西北工业大学学报, 2014,32(4): 511-516
8.张乐, 周洲, 李盈盈, 甘文彪, 许晓平.飞翼无人机保形非对称尾喷管设计与流场特性[J]. 西北工业大学学报,