RBCC变结构燃烧室几何喉道适用范围研究 -- 西北工业大学学报,2017,35(6):975-982
论文:2017,Vol:35,Issue(6):975-982
引用本文:
叶进颖, 潘宏亮, 秦飞. RBCC变结构燃烧室几何喉道适用范围研究[J]. 西北工业大学学报
Ye Jinying, Pan Hongliang, Qin Fei. Investigation on the Applicable Scope of Geometrical Throat in RBCC Variable Structure Combustion Chamber[J]. Northwestern polytechnical university

RBCC变结构燃烧室几何喉道适用范围研究
叶进颖, 潘宏亮, 秦飞
西北工业大学 燃烧、热结构与内流场重点实验室, 陕西 西安 710072
摘要:
变结构燃烧室几何喉道能够提高冲压发动机亚燃模态性能,旨在研究宽马赫数范围RBCC燃烧室几何喉道的适用范围和作用机理。首先采用气流推力分析方法研究燃烧室气动参数变化规律,结果表明,在3 000 K燃烧室极限温度范围内,燃烧室几何喉道适用范围可以拓展至飞行马赫数Ma=7.0。随后在Ma=6.0变结构燃烧室构型基础上,进行了Ma=6.0、6.5以及7.0条件下发动机全流道一体化三维数值计算,对燃烧流场结果对比分析发现:几何喉道对RBCC高飞行马赫数条件下的燃烧释热有积极作用,并具有较好的发动机性能,表明保持Ma=6.0几何喉道仍能对Ma=6.5、Ma=7.0来流起到改善燃烧品质提高发动机性能的作用,燃烧室几何喉道在Ma ≤ 7.0范围内有效。最后,通过模拟Ma=6.0来流地面直连实验研究表明:采用几何喉道方式能够保证燃烧室内燃料的高效稳定燃烧。
关键词:    变结构    RBCC    几何喉道    数值模拟    直连实验   
Investigation on the Applicable Scope of Geometrical Throat in RBCC Variable Structure Combustion Chamber
Ye Jinying, Pan Hongliang, Qin Fei
Science and Technology on Combustion, Internal Flow and Thermal-Structure Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The geometrical throat of variable structure combustion chamber can improve the performance of ramjet engine. For purpose of expand the range of application of geometrical throat of variable structure RBCC engine and study the performance in high flight Mach number, stream thrust analysis method was firstly adopted. It shown that combustor geometrical throat can be utilized up to flight Mach number Ma=7.0 with the limiting temperature of 3 000 K. Based on the configuration of Ma=6.0 variable combustion chamber, three-dimensional numerical simulation of the engine flow path at Ma=6.0, 6.5 and 7.0 was carried out to comparative analyze the flow field details. The results show:the geometrical throat has a positive effect of the heat release to combustion of RBCC under conditions of high flight Mach number, and has a better engine performance, validated the geometrical throat can be applied to the Mach number Ma ≤ 7.0. Finally, the results of ground direct-connect experiment in the simulated flight Mach number Ma=6.0 condition show that the geometrical throat can ensure the efficient and stable combustion of the combustion chamber.
Key words:    variable structure    RBCC    geometrical throat    numerical simulation    direct-connect experiment    flow fields    Mach number, variable structure control   
收稿日期: 2017-02-01     修回日期:
DOI:
通讯作者:     Email:
作者简介: 叶进颖(1988-),西北工业大学博士研究生,主要从事航空宇航推进理理论与工程研究。
相关功能
PDF(2621KB) Free
打印本文
把本文推荐给朋友
作者相关文章
叶进颖  在本刊中的所有文章
潘宏亮  在本刊中的所有文章
秦飞  在本刊中的所有文章

参考文献:
[1] 秦飞,吕翔,刘佩进,等. 火箭基组合推进研究现状与前景[J]. 推进技术,2010, 31(6):660-665 Qin Fei, Lü Xiang, Liu Peijin, et al. Research Status and Perspective of Rocket Based Combined Cycle Propulsion System[J]. Journal of Propulsion Technology, 2010, 31(6):660-665(in Chinese)
[2] Daines R, Segal C. Combined Rocket and Airbreathing Propulsion Systems for Space-Launch Applications[J]. Journal of Propulsion & Power, 1998, 14(5):605-612
[3] Nancy Shimp. Strutjet RBCC Engine Development for Low Cost Access to Space[R]. PRA-2000-99
[4] 林彬彬, 潘宏亮, 叶进颖,等. 多模态RBCC主火箭混合比对引射流动燃烧影响[J]. 固体火箭技术, 2015, 38(6):804-810 Lin Binbin, Pan Hongliang, Ye Jinying, et al. Effect of Primary Rocket Mixture Ratio on Ejection and Combustion in RBCC Configuration for Multiple Modes[J]. Journal of Solid Rocket Technology, 2015, 38(6):804-810(in Chinese)
[5] 徐朝启, 何国强, 刘佩进,等. RBCC发动机亚燃模态一次火箭引导燃烧的实验[J]. 航空动力学报, 2013, 28(3):567-572 Xu Chaoqi, He Guoqiang, Liu Peijin, et al. Experiment of Primary Rocket-Piloting Combustion under Ramjet-Mode Condition in RBCC[J]. Journal of Aerospace Power, 2013, 28(3):567-572(in Chinese)
[6] 汤祥, 何国强, 秦飞. 轴对称结构RBCC燃烧室超燃模态燃烧性能研究[J]. 西北工业大学学报, 2014, 32(1):29-34 Tang Xiang, He Guoqiang, Qin Fei. Investigation on Combustion Performance of Axisymmetric RBCC Combustor in Scramjet Mode[J]. Journal of Northwestern Polytechnical University, 2014, 32(1):29-34(in Chinese)
[7] Gounko Y P, Shumskiy V V. Characteristics of Dual-Combustion Ramjet[J]. Thermophysics and Aeromechanics, 2014, 21(4):499-508
[8] Bouchez M, Genevieve P, Levine V, et al. Airbreathing Space Launcher Interest of a Fully Variable Geometry Propulsion System and Corresponding French-Russian Partnership[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000:3340
[9] Falempin F, Serre L. LEA Flight Test Program-Status in 2004[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2004:3344
[10] 潘余, 李大鹏, 刘卫东, 等. 变几何喉道对超燃冲压发动机点火与燃烧性能的影响[J]. 推进技术, 2006, 27(3):225-229 Pan Yu, Li Dapeng, Liu Weidong, et al. Variable Geometry Effects on the Scramjet Ignition and Combustion[J]. Journal of Propulsion Technology, 2006, 27(3):225-229(in Chinese)
[11] 李大鹏, 潘余, 吴继平, 等. 可调喷口双模态冲压发动机试验研究[J]. 航空动力学报, 2007, 22(4):625-631 Li Dapeng, Pan Yu, Wu Jiping, et al. Experimental Study of a Variable-Area Propelling Nozzle Dual-Mode Ramjet[J]. Journal of Aerospace Power, 2007, 22(4):625-631(in Chinese)
[12] Thomas S. R, Perkins H. D, Trefny C. J. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight[R]. NASA Technical Memorandum 107422
[13] 叶进颖,潘宏亮,秦飞,等. 变结构RBCC燃烧室亚燃模态性能研究[C]//第五届冲压发动机技术交流会, 2015 Ye Jinying, Pan Hongliang, Qin Fei, et al. Study on Performance of Variable Structure RBCC Combustor in Ramjet Mode[C]//5th Ramjet Engine Technology Seminar, 2015(in Chinese)
[14] 叶进颖, 潘宏亮, 秦飞,等. 宽范围变结构RBCC燃烧室性能研究[C]//第八届全国高超声速科技学术会议, 2015 Ye Jinying, Pan Hongliang, Qin Fei, et al. Combustor Performance of Wide Range Variable Geometry RBCC[C]//8th National Conference on Hypersonic Technology, 2015(in Chinese)
[15] Heiser W H, Pratt D T. Hypersonic Airbreathing Propulsion[M]. Washington, DC, AIAA, Inc., 1994
[16] Franzelli B, Riber E, Sanjosé M, et al. A Two-Step Chemical Scheme for Kerosene-Air Premixed Flames[J]. Combustion and Flame, 2010, 157(7):1364-1373
[17] Westbrook C K, Dryer F L. Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames[J]. Combustion Science and Technology, 1981, 27(1/2):31-43
[18] Ye J Y, Pan H L, Qin F, et al. Simulation of Kerosene Combustion Sustaining with Cavities in a Strut-Based RBCC Engine[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015:3837