论文:2017,Vol:35,Issue(6):954-960
引用本文:
王洋, 周军. 基于部分状态反馈的高速拦截弹制导控制一体化设计[J]. 西北工业大学学报
Yang Wang, Zhou Jun. Partial States Feedback-Based Integrated Guidance and Control Design for Hypersonic Interceptor[J]. Northwestern polytechnical university

基于部分状态反馈的高速拦截弹制导控制一体化设计
王洋, 周军
西北工业大学 精确制导与控制研究所, 陕西 西安 710072
摘要:
针对视线角速率与攻角都无法测量的高速拦截弹制导控制一体化(IGC)系统,提出一种新型基于部分状态反馈的控制器。首先,基于线性扩张状态观测器(LESO)同时观测不可测的中间状态与未知干扰。之后,基于反演控制(BC)设计控制器,反演算法中的虚拟及真实控制量都只使用已知状态与LESO观测的中间状态,避免使用不可测状态。此外,反演中还使用LESO估计的未知干扰进行补偿来提高控制器的鲁棒性。随后,基于lyapunov稳定性理论证明了整个闭环系统的稳定性。最后,将新方法与现有采用全状态反馈的IGC算法进行对比仿真。仿真结果表明,在不使用视线角速率与攻角的情况下,新方法依旧能够保证足够的拦截精度。
关键词:    部分状态反馈    观测器    非匹配干扰    反演法    制导控制一体化   
Partial States Feedback-Based Integrated Guidance and Control Design for Hypersonic Interceptor
Yang Wang, Zhou Jun
Institute of Precision Guidance and Control, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
For the integrated guidance and control (IGC) system of hypersonic interceptor with unmeasurable LOS angle rate and angle of attack, a novel controller based on partial states feedback is proposed. Firstly, the unmeasurable states and uncertainties are observered by a linear extended state observer (LESO). Then, a back-stepping controller is proposed for the IGC system. The proposed back-stepping controller not only use the estimated state to avoid using unmeasurable LOS angle rate and angle of attack, but also use the estimated uncertainties to enhance the robustness of IGC system. the closed loop system stability is proved by the Lyapunov theory. Simulation results demonstrate the the proposed method still can achieve enough small miss distance even if the LOS angle rate and angle of attack are unmeasurable.
Key words:    partial states feedback    observer    mismatched uncertainties    Back-stepping control    integrated guidance and control    angle of attack    backstepping    closed loop systems    controllers    Lyapunov function    Mach number   
收稿日期: 2017-02-12     修回日期:
DOI:
通讯作者:     Email:
作者简介: 王洋(1989-),西北工业大学博士研究生,主要从事飞行器动力学与控制研究。
相关功能
PDF(1211KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王洋  在本刊中的所有文章
周军  在本刊中的所有文章

参考文献:
[1] Maital L, Tal S, Shual G. Linear Quadratic Integrated Vs Separated Autopilot-Guidance Design[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6):1722-1730
[2] Yan H, Ji Hb. Integrated Guidance and Control for Dual-Control Missiles Based on Small Gain Theorem[J]. Automatica, 2012, 48(10):2686-92
[3] 薛文超,黄朝东,黄一. 飞行制导控制一体化设计方法综述[J]. 控制理论与应用,2013, 30(12):1511-1520 Xue Wenchao, Huang Chaodong, Huang Yi. Design Methods for the Integrated Guidance and Control System[J]. Control Theory & Applications, 2013, 30(12):1511-1520(in Chinese)
[4] 尹永鑫,杨明,王子才. 导弹三维制导控制一体化研究[J]. 电机与控制学报,2010, 14(3):87-91 Yin Yongxin, Yang Ming, Wang Zicai. Three-Dimensiional Guidance and Control for Missile[J]. Electric Machines and Control, 2010, 14(3):87-91(in Chinese)
[5] Menon P K, Ohlmeyer E J. Integrated Design of Agile Missile Guidance and Control Systems[C]//Proceedings of the 7th IEEE Mediterranean Conference, 1999:28-30
[6] Xin M, Balakrishnan S H, Ohlmeyer E J. Integrated Guidance and Control of Missiles with θ-D Method[J]. IEEE Trans on Control Systems Technology, 2006, 14(6):981-992
[7] Palumbo N F, Jackson T D. Integrated Missile Guidance and Control:A State Dependent Riccati Differential Equation Approach[C]//Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast, 1999:243-248
[8] Yip P P, Hedrick J K. Adaptive Dynamic Surface Control:A Simplified Algorithm for Adaptive Backstepting Control of Nonlinear Systems[J]. International Journal of Control, 1998, 71(5):959-979
[9] Zhang T P, Ge S S, Adaptive Dynamic Surface Control of Nonlinear Systems with Unknown Dead Zone in Pure Feedback Form[J]. Automatica, 2008, 44(7):1895-1903
[10] Ran Maopeng, Wang Qing, Hou Delong, Dong Chaoyang. Backstepping Design of Missile Guidance and Control Based on Adaptive Fuzzy Sliding Mode Control[J]. Chinese Journal of Aeronautics, 2014, 27(3):634-642
[11] Hou Mingzhe, Liang Xiaoling, Duan Guangren. Adaptive Block Dynamic Surface Control for Integrated Missile Guidance and Autopilot[J]. Chinese Journal of Aeronautics, 2013, 26(3):741-750
[12] Shao Xingling, Wang Honglun. Back-Stepping Active Disturbance Rejection Control Design for Integrated Missile Guidance and Control System Via Reduced-Order ESO[J]. ISA Transactions, 2015, 57:10-22
[13] 董朝阳, 程昊宇, 王青. 基于自抗扰的反演滑模制导控制一体化设计[J]. 系统工程与电子技术, 2015, 37(7):1604-1610 Dong Chaoyang, Cheng Haoyu, Wang Qing. Backstepping Sliding Mode Control for Integrated Guidamce and Control Design Based on Active disturbance Rejection[J]. Systems Engineering and Electronics, 2015, 37(7):1604-1610(in Chinese)
[14] Yan Han, Ji Haibo. Guidance Laws Based on Input-To-State Stability and High-Gain Observer[J]. IEEE Trans on Aerospace and Electronic Systems, 2012, 48(3):2518-2529
[15] Liu Zhen, Tan Xiangmin, Yuan Ruyi. Immersion and Invariance-Based Output Feedback Control of Air-Breathing Hypersonic Vehicles[J]. IEEE Trans on Automation Science and Engineering, 2016, 13(1):394-402
[16] Han J. From PID to Active Disturbance Rejection Control[J]. IEEE Trans on Ind Electron, 2009, 56(3):900-906