共轴刚性旋翼高速直升机旋翼操纵策略分析 -- 西北工业大学学报,2017,35(5):915-921
论文:2017,Vol:35,Issue(5):915-921
引用本文:
袁野, 陈仁良, 李攀, 鲁可. 共轴刚性旋翼高速直升机旋翼操纵策略分析[J]. 西北工业大学学报
Yuan Ye, Chen Renliang, Li Pan, Lu Ke. Rotor Control Strategy Analysis of Coaxial Rigid Rotor High-Speed Helicopter[J]. Northwestern polytechnical university

共轴刚性旋翼高速直升机旋翼操纵策略分析
袁野1, 陈仁良1, 李攀1, 鲁可2
1. 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 江苏 南京 210016;
2. 中国直升机设计研究所 直升机旋翼动力学重点实验室, 江西 景德镇 333001
摘要:
为研究横向周期变距差动和旋翼控制相位角2种旋翼冗余操纵策略对共轴刚性旋翼高速直升机飞行动力学特性的影响,利用经过验证的XH-59直升机飞行动力学模型,在直升机和复合推进2种飞行模式下,分析了横向周期变距差动和旋翼控制相位角对共轴刚性旋翼高速直升机配平特性;上、下旋翼桨毂最大弯矩以及需用功率的影响。结果表明:随着前飞速度的增加,提高横向周期变距差动和降低旋翼控制相位角会减小直升机模式下的低头姿态,降低直升机和复合推进模式下的配平总距和需用功率。降低横向周期变距差动和提高旋翼控制相位角有利于降低2种模式下的最大桨毂弯矩。随着前飞速度增加,相比于调节横向周期变距差动,改变旋翼控制相位角会明显增加2种模式下配平纵向周期变距,甚至使其超过限幅。同时,采用横向周期变距差动对调节直升机需用功率和桨毂处弯矩的效果更为明显。
关键词:    双旋翼共轴直升机    刚性旋翼    配平特性    直升机需用功率    桨毂弯矩    旋翼控制相位角    横向周期变距差动   
Rotor Control Strategy Analysis of Coaxial Rigid Rotor High-Speed Helicopter
Yuan Ye1, Chen Renliang1, Li Pan1, Lu Ke2
1. National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. Science and Technology on Rotorcraft Aeromechanics Laboratory(CHRDI), Jingdezhen 333001, China
Abstract:
In order to research on the effect of lateral cyclic pitch differential and rotor control phase angle on the flight dynamic characteristics of coaxial rigid rotor high-speed helicopter. By using the validated flight dynamic model of XH-59 helicopter, analyze the influence of lateral cyclic pitch differential and rotor control phase on the trim characteristics, maximum hub bending moment of upper and lower rotors and power required under helicopter mode and compound mode. The results show:with growing up of forward speed, increasing lateral cyclic pitch differential and decreasing rotor control phase angle can augment the trim pitch attitude, reduce the trim collective pitch and power required of helicopter mode and compound mode. Decreasing lateral cyclic pitch differential and increasing rotor control phase angle can lower the maximum hub bending moment. Comparing with lateral cyclic pitch differential, increasing rotor control phase angle cause the trim longitudinal cyclic pitch rapidly increase even exceed the limitation. Meanwhile, lateral cyclic pitch differential can do better in adjusting the power required and hub bending moment.
Key words:    coaxial helicopter    rigid rotor    trim characteristic    helicopter power required    Hub bending moment    rotor control phase angle    Lateral cyclic pitch differential   
收稿日期: 2017-02-12     修回日期:
DOI:
基金项目: 航空科学基金(20145752034)、国家自然科学基金(51405227)与江苏高校优势学科建设工程资助
通讯作者:     Email:
作者简介: 袁野(1991-),南京航空航天大学博士研究生,主要从事直升机飞行动力学与控制研究。
相关功能
PDF(1627KB) Free
打印本文
把本文推荐给朋友
作者相关文章
袁野  在本刊中的所有文章
陈仁良  在本刊中的所有文章
李攀  在本刊中的所有文章
鲁可  在本刊中的所有文章

参考文献:
[1] Johnson W. NDARC——NASA Design and Analysis of Rotorcraft——Theoretical Basis and Architecture[R]. NASA/TP-2009-215402
[2] 邓景辉. 高速直升机前行桨叶概念旋翼技术[J]. 航空科学技术,2012(3):9-14 Deng Jinghui. The ABC Rotor Technology for High Speed Helicopter[J]. Aeronautical Science and Technology, 2012(3):9-14(in Chinese)
[3] Johnson W. Influence of Lift Offset on Rotorcraft Performance[R]NASA/TP-2009-215404
[4] Burgess R K. The ABC Rotor:A Historical Perspective[C]//American Helicopter Society, 60th Annual Forum of Baltimore, American Helicopter Society, 2004:7-10
[5] Schmaling D N, Cabrera P L. Upper Rotor Control System for a Counter-Rotating Rotor System[P]. U S Patent 7585153
[6] Cooper D E, Klingloff R F. Control for Helicopter Having Dual Rigid Rotors[P]. U S Patent 4008979
[7] Erez Eller. X2TM Load Alleviating ContRols[C]//American Helicopter Society, 68th Annual Forum of Texas, 2012:1578-1588
[8] Walsh D, Weiner S, Arifian K, et al. High Airspeed Testing of the Sikorsky X2 Technology Demonstrator[C]//American Helicopter Society 67th Annual Forum, Virginia Beach, 2011:2999-3010
[9] Gaffey Troy M, Zhang Chi. Aeromechanics of the Coaxial Compound Helicopter[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2015:1411-1429
[10] Ruddell A J. Advancing Blade Concept (ABCTM) Development[J]. Journal of the American Helicopter Society, 1976, 22(1):13-23
[11] 袁野,陈仁良,李攀,等. 共轴刚性旋翼飞行器配平特性及验证[J]. 南京航空航天大学学报,2016,48(2):186-193 Yuan Ye, Chen Renliang, Li Pan, et al. Trim Characteristics and Verification of Coaxial Rigid Rotor Aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2):186-193(in Chinese)
[12] Geiger B, Horn J F, Greenjack A, et al. Trim and Maneuver Optimization Methods for Compound Rotorcraft[C]//American Helicopter Society 60th Annual Forum, Baltimore, 2004:2236-2255
[13] Ferguson K M. Towards a Better Understanding of the Flight Mechanics of Compound Helicopter Configurations[D]. Glasgow, University of Glasgow, 2015
[14] Felker Ⅲ F F. Performance and Loads Data from a Wind Tunnel Test of a Full-Scale, Coaxial, Hingeless Rotor Helicopter[R]. USAARADCOM TR 81-A-27
[15] Phelps A E, Mineck R E. Aerodynamic Characteristics of a Counter-Rotating, Coaxial, Hingeless Rotor Helicopter Model with Auxiliary Propulsion[R]. NASA-TM-78705, 1978