论文:2017,Vol:35,Issue(5):890-897
引用本文:
连业达, 马强, 刘中原, 张玉强, 翟治鹏. 水平地震作用下框筒结构的剪力滞后效应[J]. 西北工业大学学报
Lian Yeda, Ma Qiang, Liu Zhongyuan, Zhang Yuqiang, Zhai Zhipeng. Shear Lag Effect of Framed Tube Structureunder Horizontal Seismic Action[J]. Northwestern polytechnical university

水平地震作用下框筒结构的剪力滞后效应
连业达1, 马强1, 刘中原1, 张玉强1, 翟治鹏2
1. 西北工业大学 力学与土木建筑学院, 陕西 西安 710072;
2. 中南大学 土木工程学院, 湖南 长沙 410075
摘要:
将框筒结构等效为实腹筒,假定筒体翼缘和腹板的纵向翘曲位移函数,利用能量变分原理推导出结构在水平地震作用下的振动微分控制方程,以及静力作用下的微分控制方程,并结合边界条件对其进行求解。通过对振动方程的退化求解,定义了框筒的动剪力滞后系数。随后通过算例分析得出了如下结论:算例结果验证了翘曲位移函数及计算方法的准确性;水平地震作用下,即使地震动幅值不大,框筒结构也会出现明显的剪力滞后效应,且剪力滞后效应随高度的变化规律与静力作用下相同;当地震动频率接近共振频率时,结构剪力滞后效应加重,且角柱轴力幅值很大;框筒高宽比增大可以改善结构的动剪力滞后程度,但也会增大结构的内力,故控制合适的高宽比对结构具有重要意义。
关键词:    水平地震动    框筒结构    剪力滞后    MATLAB    应变能   
Shear Lag Effect of Framed Tube Structureunder Horizontal Seismic Action
Lian Yeda1, Ma Qiang1, Liu Zhongyuan1, Zhang Yuqiang1, Zhai Zhipeng2
1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Civil Engineering, Central South University, Changsha 410075, China
Abstract:
The framed tube structure is equivalent to the solid cylinder, and the longitudinal warping displacement function of the flange and the web is assumed. The governing vibrational differential equations of the structure under the action of horizontal seismic action are deduced by energy variation principle; the governing differential equations under the static action are deduced, and the boundary conditions are solved. Through the solution of the vibration equation, the dynamic shear lag coefficient of the framed tube is defined. Then the following conclusions are obtained through an example:the results of the example verify the accuracy of the warping displacement function and the calculation method; under the action of horizontal seismic action, even if the amplitude of ground motion is not large, the shear lag effect will appear obviously in the framed tube structure, and the shear lag effect will be the same as the static effect; when the local vibration frequency is close to the resonant frequency, the structural shear lag effect is aggravated, and the angular force of the corner column is large; the increase of the aspect ratio of the framed tube can improve the dynamic shear lag of the structure, but also increase the internal force of the structure, therefore, it is important to control the proper aspect ratio to the structure.
Key words:    horizontal seismic action    framed tube structure    shear lag    MATLAB    strain energy   
收稿日期: 2017-03-12     修回日期:
DOI:
基金项目: 国家自然科学基金(51308458)资助
通讯作者:     Email:
作者简介: 连业达(1980-),西北工业大学副教授,主要从事建筑结构抗震理论与方法研究。
相关功能
PDF(1167KB) Free
打印本文
把本文推荐给朋友
作者相关文章
连业达  在本刊中的所有文章
马强  在本刊中的所有文章
刘中原  在本刊中的所有文章
张玉强  在本刊中的所有文章
翟治鹏  在本刊中的所有文章

参考文献:
[1] 金仁和,魏德敏.框筒结构剪力滞后研究现状与思考[J]. 建筑钢结构进展, 2008, 10(2):23-27 Jin Renhe, Wei Demin. Current Investigation and Expectation on the Shear Lag of Framed-Tube Structures[J]. Progress in Steel Building Structures, 2008, 10(2):23-27(in Chinese)
[2] 高雁,李正良. 高层筒体结构剪力滞后研究[J]. 西南科技大学学报,2006,21(2):15-19 Gao Yan, Li Zhengliang. Shear Lag Effect in Tall Tubular Structures[J]. Journal of Southwest University of Science and Technology, 2006, 21(2):15-19(in Chinese)
[3] 姚树典. 钢筋混凝土筒中筒结构的剪力滞后效应及其抗震性能分析[D]. 太原:太原理工大学,2015 Yao Shudian. The Shear Lag Effect and Seismic Performance Analysis of Cylinder Structure of Reinforced Concrete[D]. Taiyuan, Taiyuan University of Technology,2015(in Chinese)
[4] 郑之以, 林金越. 剪力滞后效应的产生及其影响因素[C]//第十六届全国现代结构工程学术研讨会, 北京, 2016:1717-1729 Zheng Zhiyi, Lin Jinyue. Generation of Shear Lag Effect and Its Influencing Factors[C]//The 16th National Symposium on Modern Structural Engineering, Beijing, 2016:1717-1729(in Chinese)
[5] 杜修力,贾鹏. 不同连梁跨高比混凝土核心筒抗震性能试验研究[J]. 建筑结构学报,2008,29(Suppl 1):5-9 Du Xiuli, Jia Peng. Experimental Study on Seismic Behavior of Reinforced Concrete Core Walls with Various Span-Depth Ratio of Coupling Beam[J]. Journal of Building Structures, 2008, 29(Suppl 1):5-9(in Chinese)
[6] 史庆轩,侯炜,刘飞. 钢筋混凝土核心筒抗震性能试验研究[J]. 建筑结构学报,2011,32(10):119-129 Shi Qingxuan, Hou Wei,Liu Fei. Experiment on Seismic Behavior of Reinforced Concrete Core Walls under Low Cycle Reversed Loading[J]. Journal of Building Structures, 2011, 32(10):119-129(in Chinese)
[7] 余德冕,马克俭, 张华刚. 新型超高层装配整体钢网格盒式"筒中筒"混合结构力学特性及其剪力滞后效应分析[J]. 空间结构, 2014, 20(2):3-8 Yu Demian, Ma Kejian, Zhang Huagang. Analysis of Mechanical Properties and Shear Lag Effect of New Type of Super-High-Layer Assembly Integral Steel Mesh Cartridge "Cylinder Cylinder"[J]. Spatial Structure, 2014, 20(2):3-8(in Chinese)
[8] 史庆轩,任浩. 高层斜交网格筒结构体系剪力滞后效应研究[J]. 建筑结构,2016,46(4):1-7 Shi Qingxuan, Ren Hao. Research of Shear Lag Effect on High-Rise Diagrid Tube Structural System[J]. Building Structure, 2016, 46(4):1-7(in Chinese)
[9] Himanshu Gaur, Ravindra K Goliya. Mitigating Shear Lag in Tall Buildings[J]. International Journal of Advanced Structural Engineering, 2015, 7(3):269-279
[10] 陈玉骥. 均质箱梁在分布动载作用下考虑剪力滞效应的稳态解[J]. 四川建筑科学研究,2014, 40(5):1-5 Chen Yuji. Steady-State Solution of Shear Lags Effect Considering Uniform Box Girder under Distributed Dynamic Load[J]. Sichuan Building Science, 2014, 40(5):1-5(in Chinese)
[11] Zhang Y G, Li Y N. Analysis on Shear Lag Effect of Box Girder Subject to Dynamic Load[J]. Applied Mechanics & Materials, 2014, 501/502/503/504:811-814
[12] 张玉芳. 高层建筑框筒结构简化分析方法研究[D]. 长沙:湖南大学, 2005 Zhang Yufang. Study on Simplified Method of Frame Structure of High-Rise Building[D]. Changsha, Hunan University, 2005(in Chinese)
[13] 包世华,张铜生. 高层建筑结构设计和计算[M]. 北京:清华大学出版社,2013 Bao Shihua, Zhang Tongsheng. Design and Calculation of High-Rise Building Structures[M]. Beijing, Tsinghua University Press, 2013(in Chinese)
[14] 周娟. 筒体结构弯扭分析的精细积分法[D]. 邯郸:河北工程大学, 2008 Zhou Juan. Precise Integration Method For Bending and Torsion Analysis of Cylindrical Structures[D]. Handan, Hebei Engineering University, 2008(in Chinese)
[15] Rahgozar R, Ahmadi A R, Sharifi Y. A Simple Mathematical Model for Approximate Analysis of Tall Buildings[J]. Applied Mathematical Modelling, 2010, 34(9):2437-2451
[16] Rahgozar R, Ahmadi A R, Ghelichi M, et al. Parametric Stress Distribution and Displacement Functions for Tall Buildings under Lateral Loads[J]. Structural Design of Tall & Special Buildings, 2014, 23(1):22-41