基于Dice匹配的SWOMP压缩感知重构算法 -- 西北工业大学学报,2017,35(5):774-779
论文:2017,Vol:35,Issue(5):774-779
引用本文:
王顶, 吴玥瑶, 曹旺辉, 徐军. 基于Dice匹配的SWOMP压缩感知重构算法[J]. 西北工业大学学报
Wang Ding, Wu Yueyao, Cao Wanghui, Xu Jun. Improved Reconstruction Algorithm for Compressed Sensing[J]. Northwestern polytechnical university

基于Dice匹配的SWOMP压缩感知重构算法
王顶, 吴玥瑶, 曹旺辉, 徐军
西北工业大学 电子信息学院, 陕西 西安 710129
摘要:
传统的分段弱正交匹配追踪(SWOMP)重构算法在重构信号时,由于采用了内积匹配准则,观测矩阵中任意2个相似的原子都会影响残差信号的匹配过程,降低信号重构质量。利用Dice系数匹配度量准则,优化了支撑集的选择,降低了相似原子对匹配过程的影响。仿真结果证明:在相同的条件下,与传统的SWOMP算法相比,优化后的基于Dice系数的分段弱正交匹配追踪(Dice-SWOMP)算法具有更小的恢复残差以及更高的信号重构成功率。
关键词:    压缩感知    重构算法    SWOMP算法    Dice系数   
Improved Reconstruction Algorithm for Compressed Sensing
Wang Ding, Wu Yueyao, Cao Wanghui, Xu Jun
School of Electronic and Information, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
When reconstructing the signal with the traditional SWOMP reconstruction algorithm, any two similar atoms in the observation matrix will affect the matching process of the residual information and reduce the quality of signal reconstruction due to the use of inner product matching criterion. In this paper, the Dice coefficient matching metric is used to optimize the selection of the support set and reduce the impact of similar atom on the matching process. Finally, the simulation results show that the optimized Dice-SWOMP algorithm based on the Dice coefficient has smaller recovery residuals and higher signal reconstruction success rate than the SWOMP algorithm under the same conditions.
Key words:    compressed sensing    reconstruction algorithm    SWOMP algorithm    Dice coefficient   
收稿日期: 2017-02-12     修回日期:
DOI:
基金项目: 国家自然科学基金(61271279)与国家863计划项目(2015AA01A704)联合资助
通讯作者:     Email:
作者简介: 王顶(1973-),西北工业大学副教授,主要从事宽带无线通信及抗干扰通信研究。
相关功能
PDF(1185KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王顶  在本刊中的所有文章
吴玥瑶  在本刊中的所有文章
曹旺辉  在本刊中的所有文章
徐军  在本刊中的所有文章

参考文献:
[1] 焦李成,杨淑媛,刘芳,侯彪. 压缩感知回顾与展望[J]. 电子学报,2011,7(39):1651-1662 Jiao Licheng, Yang Shuyuan, Liu Fang, Hou Biao. Development and Prospect of Compressive Sensing[J]. Acra Electronica Sinica,2011,7(39):1651-1662(in Chinese)
[2] 杨海蓉,张成,丁大为,韦穗. 压缩传感理论与重构算法[J]. 电子学报,2011,39(1):142-148 Yang Hairong, Zhang Cheng, Ding Dawei, Wei Sui. The Theory of Compressed Sensing and Reconstruction Algorithm[J]. Acra Electronica Sinica,2011,39(1):142-148(in Chinese)
[3] Gao R,Zhao R Z,Hu S H. Variable Step Size Adaptive Matching Pursuit Algorithm for Image Reconstruction Based on Compressive Sensing[J]. Acta Optica Sinica,2010,30(6):1639-1644
[4] Baraniuk R G, Cevher V, Duarte M F, et al. Model-Based Compressive Sensing[J]. IEEE Trans on Information Theory,2010, 56(4):1982-2001
[5] Jacques L, Laska J N, Boufounos P T, et al. Robust 1-bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors[J]. IEEE Trans on Information Theory, 2013,59(4):2082-2102
[6] Zhao S, Zhang Q Y, Yang H. Orthogonal Matching Pursuit Based on Tree Structure Redundant Dictionary[J]. Communications in Computer and Information Science, 2011,2:310-315
[7] Karahanoglu N B, Erdogan H. A* Orthogonal Matching Pursuit:Best-First Search for Compressed Sensing Signal Recovery[J]. Digital Signal Processing:A Review Journal,2012,22(4):555-568
[8] Needell D, Vershynin R. Signal Recovery from Incompleteand Inaccurate Measurements via Regularized Orthogonal Matching Pursuit[J]. IEEE Journal on Selected Topics in Signal Processing,2010,4(2):310-316
[9] 戴琼海,付长军,季向阳. 压缩感知研究[J]. 计算机学报, 2011,34(3):425-434 Dai Qionghai, Fu Changjun, Ji Xiangyang. Research on Compressed Sensing[J]. Chinese Journal Computers,2011,34(3):425-434(in Chinese)