随时间和空间变化可靠性及可靠性全局灵敏度分析的包络函数法 -- 西北工业大学学报,2017,35(4):591-598
论文:2017,Vol:35,Issue(4):591-598
引用本文:
石岩, 吕震宙, 周易成. 随时间和空间变化可靠性及可靠性全局灵敏度分析的包络函数法[J]. 西北工业大学学报
Shi yan, LÜ Zhenzhou, Zhou Yicheng. Temporal and Spatial Reliability and Global Sensitivity Analysis with Envelope Functions[J]. Northwestern polytechnical university

随时间和空间变化可靠性及可靠性全局灵敏度分析的包络函数法
石岩, 吕震宙, 周易成
西北工业大学 航空学院, 陕西 西安 710072
摘要:
文章将包络函数引入时空动态可靠性问题,通过包络面来近似随时间和空间位置变化的多参数动态可靠性问题的失效域,从而将时空动态可靠性问题转化成相应的静态问题,在保证计算精度的条件下极大地降低了可靠性与可靠性全局灵敏度分析的计算量。对于时空动态可靠性全局灵敏度分析问题,文章将包络面与三点估计相结合,高效完成了输入变量的可靠性全局灵敏度分析。
关键词:    动态可靠性    动态可靠性全局灵敏度    包络函数法    多输出    三点估计    计算效率    降低成本   
Temporal and Spatial Reliability and Global Sensitivity Analysis with Envelope Functions
Shi yan, LÜ Zhenzhou, Zhou Yicheng
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In this paper, we employ the envelope functions in temporal and spatial reliability problems, by approximating the failure domain of the temporal and spatial multi-parameter reliability through the envelope hyper-planes, the temporal and spatial reliability can be converted into time-independent ones, thus the computational cost can be greatly reduced under guaranteeing the calculation precision. Combining the envelope hyper-plane with three-point estimation, the global sensitivity of the reliability with respect to the input variables can be analyzed efficiently.
Key words:    dynamic reliability    dynamic global reliability sensitivity    envelope function    multiple-output    three-point estimation    computational efficiency    cost reduction   
收稿日期: 2017-03-01     修回日期:
DOI:
基金项目: 中央高校基本科研业务费专项资金(Grant 3102015 BJ (II)CG009)资助
通讯作者:     Email:
作者简介: 石岩(1992—),西北工业大学硕士研究生,主要从事结构机构可靠性及灵敏度研究。
相关功能
PDF(1481KB) Free
打印本文
把本文推荐给朋友
作者相关文章
石岩  在本刊中的所有文章
吕震宙  在本刊中的所有文章
周易成  在本刊中的所有文章

参考文献:
[1] Zhang J, Wang J, Du X. Time-Dependent Probabilistic Synthesis for Function Generator Mechanisms[J]. Mechanism and Machine Theory, 2011, 46(9): 1236-1250
[2] Thoft-Christensen P, Murotsu Y. Application of Structural Systems Reliability Theory[M]. Berlin, Springer Verlag, 1986
[3] Ditlevsen O D, Madsen H O. Structural Reliability Methods[M]. New York, Wiley, 1996
[4] Hohenbichler M, Rackwitz R. Improved of Second-Order Reliability Estimates by Importance Sampling[J]. Journal of Engineering Mechanics, ASCE, 1988, 114(12): 2195-2199
[5] Du X, Sudjianto A. The First Order Saddlepoint Approximation for Reliability Analysis[J]. American Institute of Aeronautics and Astronautics Journal, 2015, 42(6): 1199-1207
[6] 吕震宙,宋述芳,李洪双. 结构机构可靠性及可靠性灵敏度分析[M]. 北京:科学出版社,2009 Lu Zhenzhou, Song Shufang, Li Hongshuang. Reliability and Reliability Sensitivity Analysis of Structural Mechanism[M]. Beijing, Science Press, 2009 (in Chinese)
[7] Li J, Chen J B, Fan W H. The Equivalent Extreme-Value Event and Evaluation of the Structural System Reliability[J]. Structure Safety, 2007, 29(2): 112-131
[8] Chen J B, Li J. The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures with Uncertain Parameters[J]. Structure Safety, 2007, 29(2): 77-93
[9] Li J, Mourelators Z P. Time-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm[J]. Journal of Mechanical Design, 2009, 131(7): 1119-1133
[10] Sudret B. Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems[J]. Structure & Infrastructure Engineering, 2008, 4(5): 353-362
[11] Schrupp K, Rackwitz R. Outcrossing Rates of Marked Poisson Cluster Processes in Structural Reliability[J]. Applied Mathematical Modelling, 1988, 12(5): 482-490
[12] Rice S O. Mathematical Analysis of Random Noise[J]. Bell System Technical Journal, 1945, 24(3): 46-156
[13] Bastard G. Superlattice Band Structure in the Envelope Function Approximation[J]. Physical Review B, 1981, 24(24): 5693-5697
[14] Xia R W, Chen S J. A Quasi-Analytic Method for Structural Optimization[J]. Communications in Numerical Methods in Engineering, 1998, 14(6): 569-580
[15] Jeong J L, Byung C L. Efficient Evaluation of Probabilistic Constraints Using an Envelope Function[J]. Engineering Optimization, 2005, 37(2): 185-200
[16] Du XP. Time-Dependent Mechanism Reliability Analysis with Envelope Functions and First-Order Approximation[J]. Journal of Mechanical Design, 2014, 136(8): 52-68
[17] Wei PF, Lu ZZ, Hao WR. Efficient Sampling Methods for Global Reliability Sensitivity Analysis[J]. Computer Physics Communications, 2012, 183(8): 1728-1743
[18] Cui LJ, Lu ZZ. Moment-Independent Importance Measure of Basic Random Variable and Its Probability Density Evolution Solution[J]. Science China Technological Sciences, 2010, 53(53): 1138-1145
[19] Seo HS, Kwak BM. Efficient Statistical Tolerance Analysis for General Distributions Using Three-Point Information[J]. International Journal of Production Research, 2002, 40(40): 931-944
[20] 张磊刚,吕震宙,陈军. 基于失效概率的矩独立重要性测度的高效算法[J]. 航空学报,2014, 35(8): 2199-2206 Zhang Leigang, Lu Zhenzhou, Chen Jun. An Efficient Method for Failure Probability-Based Moment-Independent Importance Measure[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2199-2206 (in Chinese)
相关文献:
1.王飞, 吕震宙, 肖思男.多输出情况下重要性测度新指标及其高效求解[J]. 西北工业大学学报, 2015,33(4): 546-552