基于蒙特卡罗卡尔曼滤波的无人机目标定位方法 -- 西北工业大学学报,2017,35(3):435-441
论文:2017,Vol:35,Issue(3):435-441
引用本文:
贺若飞, 田雪涛, 刘宏娟, 席庆彪. 基于蒙特卡罗卡尔曼滤波的无人机目标定位方法[J]. 西北工业大学学报
He Ruofei, Tian Xuetao, Liu Hongjuan, Xi Qingbiao. A UAV Target Localization Approach Based on Monte-Carlo Kalman Filter[J]. Northwestern polytechnical university

基于蒙特卡罗卡尔曼滤波的无人机目标定位方法
贺若飞1, 田雪涛2, 刘宏娟2, 席庆彪1
1. 西北工业大学 第365研究所, 陕西 西安 710072;
2. 西安爱生技术集团公司, 陕西 西安 710065
摘要:
为了增强小型无人机目标定位的精度和稳定性,提出一种基于蒙特卡罗卡尔曼滤波的目标定位算法。蒙特卡罗方法被用于估计卡尔曼滤波的初值,以及状态量和预测观测量的均值和协方差矩阵。定位过程中只使用无人机位置和激光测距值信息,利用卡尔曼滤波框架对目标位置进行递推。飞行实验表明,相比原有多点定位方法,新方法能够在满足实时性要求的前提下将精度由原来的20~30 m提高到10 m以内并实时给出误差估计,具备很大应用潜力。
关键词:    无人机    目标定位    蒙特卡罗    卡尔曼滤波    协方差矩阵    飞行试验设计   
A UAV Target Localization Approach Based on Monte-Carlo Kalman Filter
He Ruofei1, Tian Xuetao2, Liu Hongjuan2, Xi Qingbiao1
1. No. 365 Institute, Northwestern Polytechnical University, Xi'an 710072, China;
2. Xi'an ASN Technical Group Co. Ltd., Xi'an 710065, China
Abstract:
To improve the accuracy and stability of the target localization via small UAV, a localization method based on Monte-Carlo Kalman Filter is proposed. The Monte-Carlo method is used to initialize the Kalman filter and to estimate the mean value and the covariance matrix of the state value and the predicted measurement value. The whole process only requires the location of the UAV and the distance between the UAV and the target measured by LASER equipment. The Kalman filter framework is applied to recursively estimate the location of the target. The flight experiments show that, with the real time constraint, comparing with the traditional multiple point localization method, the proposed approach improves the accuracy from approximately 20 to 30 meters to less than 10 meters, therefore has a considerably potential in future applications.
Key words:    unmanned aerial vehicles (UAV)    target localization    Monte-Carlo method    Kalman filter    covariance matrix    design of experiments   
收稿日期: 2017-03-01     修回日期:
DOI:
基金项目: 国家自然科学基金(61074155)资助
通讯作者:     Email:
作者简介: 贺若飞(1982-),西北工业大学助理研究员,主要从事无人机导航控制与目标定位研究。
相关功能
PDF(2150KB) Free
打印本文
把本文推荐给朋友
作者相关文章
贺若飞  在本刊中的所有文章
田雪涛  在本刊中的所有文章
刘宏娟  在本刊中的所有文章
席庆彪  在本刊中的所有文章

参考文献:
[1] Tisdale J, Ryan A, Zu K, et al. A Multiple UAV System for Vision-Based Search and Localization[C]//American Control Conference, 2008:1985-1990
[2] 徐诚, 黄大庆, 孔繁锵. 一种小型无人机无源目标定位方法及精度分析[J]. 仪器仪表学报, 2015, 36(5):1115-1122 Xu Cheng, Huang Daqing, Kong Fanqiang. Small UAV Passive Target Localization Approach and Accuracy Analysis[J]. Chinese Journal of Scientific Instrument, 2015, 36(5):1115-1122(in Chinese)
[3] Lin F, Dong X, Chen B M, et al. A Robust Real-Time Embedded Vision System on an Unmanned Rotorcraft for Ground Target Following[J]. IEEE Trans on Industrial Electronics, 2012, 59(2):1038-1049
[4] 张琬琳, 胡正良, 朱建军,等. 单兵综合观瞄仪中的一种目标位置解算方法[J]. 电子测量技术, 2014, 37(11):1-3 Zhang Wanlin, Hu Zhengliang, Zhu Jianjun, et al. Target Position Computing Method Applied in Soldier Target Location System[J]. Electronic Measurement Technology, 2014, 37(11):1-3(in Chinese)
[5] Han D I, Kim J H, Min C O, et al. Development of Unmanned Aerial Vehicle (UAV) System with Waypoint Tracking and Vision-Based Reconnaissance[J]. International Journal of Control, Automation and Systems, 2010, 8(5):1091-1099
[6] Barber D B, Redding J D, Mclain T W, et al. Vision-Based Target Geo-Location Using a Fixed-Wing Miniature Air Vehicle[J]. Journal of Intelligent & Robotic Systems, 2006, 47(4):361-382
[7] 施丽娟,熊智,柏青青,等. 无人机多点测距目标定位算法及其误差特性研究[J]. 航空计算技术, 2015(4):57-60 Shi Lijuan, Xiong Zhi, Bai Qingqing, et al. Research on Multi-Point Range Target Location Algorithm of UAV and Its Error Characteristics[J]. Aeronautical Computing Technique, 2015(4):57-60(in Chinese)
[8] 王养柱,杨松普. 一种无人机目标定位方法[P]. 中国,CN201210170306.2, 2012 Wang Yangzhu, Yang Songpu. Target Location Method of Unmanned Plane[P]. China, CN201210170306.2, 2012
[9] Johnston M G. Ground Object Geo-Location Using UAV Video Camera[C]//2006 IEEE/AIAA 25th Digital Avionics Systems Conference, 2006:1-7
[10] Liu Jialian, Ding Wenrui, Li Hongguang. High Precision Target Localization Method Based on Compensation of Attitude Angle Errors[J]. International Journal on Smart Sensing and Intelligent Systems, 2016(9):169-190
[11] Hu L, Evans D. Localization for Mobile Sensor Networks[C]//Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, New York, USA, 2004:45-47
[12] Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo Localization for Mobile Robots[J]. Artificial Intelligence, 2001, 128(1/2):99-141
相关文献:
1.周勇, 张玉峰, 张超, 张举中.基于Sage-Husa的线性自适应平方根卡尔曼滤波算法[J]. 西北工业大学学报, 2013,31(1): 89-93