基于多小波展开的Volterra级数非线性系统建模方法 -- 西北工业大学学报,2017,35(3):428-434
论文:2017,Vol:35,Issue(3):428-434
引用本文:
陈森林, 高正红. 基于多小波展开的Volterra级数非线性系统建模方法[J]. 西北工业大学学报
Chen Senlin, Gao Zhenghong. Nonlinear System Modeling Using Multiwavelet Expansion Based Volterra Series[J]. Northwestern polytechnical university

基于多小波展开的Volterra级数非线性系统建模方法
陈森林, 高正红
西北工业大学 航空学院, 陕西 西安 710072
摘要:
Volterra级数作为一种非线性系统模型,因其具有坚实的理论基础、简洁的表示形式和明确的物理意义,在许多领域引起了广泛的研究兴趣。Volterra级数实际应用的难点在于Volterra核的辨识,随着核阶次的增加待辨识参数的数量呈指数增长。为了减少待辨识参数,文章以分段二次多小波为基函数将Volterra一阶核和二阶核展开,将问题转化为少数展开系数的估计问题。通过典型的非线性振荡器进行验证,结果表明Volterra核的辨识结果非常接近于理论值,同时由Volterra级数能准确计算系统在不同输入下的响应。此外,针对常用的输入信号无法反映非线性系统中不同频率相互作用产生的非线性影响,文中设计了一种适合于二阶核辨识的输入,称为二维扫频,与常用扫频信号相比,试验结果表明这种输入明显能更好地激励系统的非线性特性。
关键词:    Volterra级数    非线性系统建模    非线性系统辨识    多小波    输入设计   
Nonlinear System Modeling Using Multiwavelet Expansion Based Volterra Series
Chen Senlin, Gao Zhenghong
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Volterra series is powerful for nonlinear system modeling and has gained great interest of scientists across many disciplines for its theory foundation, brief formulation, and precise physics. The main difficulty of engineering application of Volterra series is the identification of Volterra kernels because the number of parameters need to identify increases exponentially with the order of the kernel. To reduce the number of estimated parameters, this paper expands the first kernel and the second kernel with piecewise quadratic multiwavelet basis function and turns the problem into the solution of a few expansion coefficients. The result of the demonstration on a prototypical nonlinear oscillator is shown that the identified kernels match with the analytical kernels very well and they can accurately predict the responses of the system to different inputs. Besides, for the common input cannot include the nonlinear effect of the interaction of different frequency in a nonlinear system, the paper designs input called two dimension chirp suited for identification of the second order Volterra kernel. Compared with the commonly used chirp inputs, numerical experiment verifies that this input can excite the nonlinear characteristics of the system better.
Key words:    volterra series    nonlinear system modeling    nonlinear system identification    multiwavelet    input design   
收稿日期: 2016-10-12     修回日期:
DOI:
通讯作者:     Email:
作者简介: 陈森林(1989-),西北工业大学博士研究生,主要从事飞行器飞行动力学与控制研究。
相关功能
PDF(2585KB) Free
打印本文
把本文推荐给朋友
作者相关文章
陈森林  在本刊中的所有文章
高正红  在本刊中的所有文章

参考文献:
[1] Schetzen M. The Volterra and Wiener Theories of Nonlinear Systems[M]. Malabar, Florida:Krieger Pub, 2006
[2] Boyd S, Chua L O. Fading Memory and the Problem of Approximating Nonlinear Operators with Volterra Series[J]. IEEE Trans on Circuits and Systems, 1985, 32(11):1150-1161
[3] Prazenica R J, Reisenthel P H, Kurdila A J, et al. Volterra Kernel Extrapolation for Modeling Nonlinear Aeroelastic Systems at Novel Flight Conditions[J]. Journal of Aircraft, 2007, 44(1):149-162
[4] Zhu A, Pedro J C, Brazil T J. Dynamic Deviation Reduction-Based Volterra Behavioral Modeling of RF Power Amplifiers[J]. IEEE Trans on Microwave Theory and Techniques, 2006, 54(12):4323-4332
[5] Omran A, Newman B. Nonlinear Analytical Multi-Dimensional Convolution Solution of the Second Order System[J]. Nonlinear Dynamics, 2010, 62(4):799-819
[6] Balajewicz M, Dowell E. Reduced-Order Modeling of Flutter and Limit-Cycle Oscillations Using the Sparse Volterra Series[J]. Journal of Aircraft, 2012, 49(6):1803-1812
[7] Safari N, Roste T, Fedorenko P, et al. An Approximation of Volterra Series Using Delay Envelopes, Applied to Digital Predistortion of RF Power Amplifiers with Memory Effects[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(2):115-117
[8] Moodi H, Bustan D. On Identification of Nonlinear Systems Using Volterra Kernels Expansion on Laguerre and Wavelet Function[C]//Control and Decision Conference(CCDC), 2010:1141-1145
[9] 王云海, 韩景龙, 张兵, 等. 空气动力二阶核函数辨识方法[J]. 航空学报, 2014, 35(11):2949-2957 Wang Yunhai, Han Jinglong, Zhang Bing, et al. Identification Method of Second-Order Kernels in Aerodynamics[J]. Acta Aeronautica et Astronautica Sinca, 2014, 35(11):2949-2957(in Chinese)
[10] Maheswaran R, Khosa R. Wavelet Volterra Coupled Models for Forecasting of Nonlinear and Non-Stationary Time Series[J]. Neurocomputing, 2015, 149, Part B:1074-1084
[11] Prazenica R J, Kurdila A J. Multiwavelet Constructions and Volterra Kernel Identification[J]. Nonlinear Dynamics, 2006, 43(3):277-310
[12] Silva W A. Application of Nonlinear Systems Theory to Transonic Unsteady Aerodynamic Responses[J]. Journal of Aircraft, 1993, 30(5):660-668
[13] Tronchin L. The Emulation of Nonlinear Time-Invariant Audio Systems with Memory by Means of Volterra Series[J]. Journal of the Audio Engineering Society, 2012, 60(12):984-996
[14] Cheng C M, Peng Z K, Zhang W M, et al. Wavelet Basis Expansion-Based Volterra Kernel Function Identification through Multilevel Excitations[J]. Nonlinear Dynamics, 2014, 76(2):985-999
[15] Marzocca P, Librescu L, Silva W A. Aeroelastic Response of Nonlinear Wing Sections Using a Functional Series Technique[J]. AIAA Journal, 2002, 40(5):813-824