基于模型预测及控制分配的阵风缓和研究 -- 西北工业大学学报,2017,35(2):259-266
论文:2017,Vol:35,Issue(2):259-266
引用本文:
刘璟龙, 胡陟, 章卫国, 许李伟, 何启志. 基于模型预测及控制分配的阵风缓和研究[J]. 西北工业大学学报
Liu Jinglong, Hu Zhi, Zhang Weiguo, Xu liwei, He Qizhi. A MPC and Control Allocation Method for Gust Load Alleviation[J]. Northwestern polytechnical university

基于模型预测及控制分配的阵风缓和研究
刘璟龙1, 胡陟2, 章卫国1, 许李伟3, 何启志1
1. 西北工业大学 自动化学院, 陕西 西安 710129;
2. 西安交通大学 电子与信息工程学院, 陕西 西安 710049;
3. 西安应用光学研究所, 陕西 西安 710065
摘要:
用改进的模型预测控制(model predictive control,MPC)和控制分配 (control allocation,CA)相结合的方法解决了大型民机在遭遇不同阵风干扰下仍能够跟踪不同指令目标的问题。首先分别计算静态和动态可达指令集,然后针对最终实际可达的指令集,分别设计相应的稳态向量计算器和MPC控制器,而控制分配器将MPC输出的虚拟控制信号最终分配给各个舵面。该方法通过投影算法将原有指令信号进行两步过滤,将可达指令集不断缩小,从而减轻了原有在线优化计算的工作量。仿真结果表明用文中方法设计的闭环方案具有良好的响应特性,在阵风干扰下仍可以实现对指令信号的良好跟踪,并具有一定的鲁棒性。
关键词:    可达指令信号集    模型预测控制    控制舵面    控制分配    阵风缓和   
A MPC and Control Allocation Method for Gust Load Alleviation
Liu Jinglong1, Hu Zhi2, Zhang Weiguo1, Xu liwei3, He Qizhi1
1. School of Automation, Northwestern Polytechnical University, Xi'an 710129, China;
2. School of Electronics and Information, Xi'an Jiaotong University, Xi'an 710049, China;
3. Xi'an Institute of Applied Optics, Xi'an 710065, China
Abstract:
In this paper, using the improved Model Predictive Control(MPC) and the Control Allocation(CA) methods with the combination of observer to solve the case that when the large civil aircraft under different wind disturbances it will still be close to the target tracking commands. First calculate the static and dynamic of admissible command set. Then, with the actual demand set, steady state vector calculator and MPC controller will be executed. Finally, the control distributor will solve the MPC's virtual output to each actual actuators. Through the projection algorithm, the method of the original signals of two step filtration, the reachable command set will be shrink, so as to reduce the workload of the original online optimization calculation. The simulation results show that the methods used in this paper has good response characteristics through the design of closed-loop scheme, under the gust disturbances it can still achieve a good of command signal tracking, and has certain robustness.
Key words:    achievable command set    model predictive control    control surfaces    control allocation    gust load alleviation   
收稿日期: 2016-09-27     修回日期:
DOI:
基金项目: 国家自然科学基金(61573286)资助
通讯作者:     Email:
作者简介: 刘璟龙(1988-),西北工业大学博士研究生,主要从事飞行控制方法研究。
相关功能
PDF(1432KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘璟龙  在本刊中的所有文章
胡陟  在本刊中的所有文章
章卫国  在本刊中的所有文章
许李伟  在本刊中的所有文章
何启志  在本刊中的所有文章

参考文献:
[1] Ossareh H R. An LQR Theory for Systems with Asymmetric Saturating Actuators[C]//American Control Conference, 2016:6941-6946
[2] Patil M J, Hodges D H. Output Feedback Control of the Nonlinear Aeroelastic Response of a Slender Wing[J]. Journal of Guidance Control & Dynamics, 2002, 25(2):302-308
[3] Nguyen L, Metzger M. Enhanced Energy Capture By a Vertical Axis Wind Turbine During Gusty Winds in an Urban/Suburban Environment[J]. Journal of Renewable & Sustainable Energy, 2015, 7(5):67-127
[4] 冯艳丽, 史忠科. 超低空空投货物出舱过程的动态逆鲁棒控制[J]. 控制工程, 2010, 17(5):579-583 Feng Y L, Shi Z K. Robust Dynamic Inversion Control for Cargo Extraction during Airdrop at Super Low Attitude[J]. Control Engineering of China, 2010, 17(5):579-583 (in Chinese)
[5] Wang Z, Behal A, Xian B, et al. Lyapunov-Based Adaptive Control Design for a Class of Uncertain MIMO Nonlinear Systems[C]//IEEE International Symposium on Intelligent Control, 2011:1510-1515
[6] Theis J, Pfifer H, Seiler P J. Robust Control Design for Active Flutter Suppression[C]//AIAA Atmospheric Flight Mechanics Conference, 2016:1751
[7] Li F, Wang Y, Ronch A D. Flight Testing an Adaptive Feedforward Controller for Gust Loads Alleviation on a Flexible Aircraft[C]//AIAA Atmospheric Flight Mechanics Conference, 2015
[8] Magar K T, Reich G W, Rickey M R, et al. Aerodynamic Characteristics Prediction via Artificial Hair Sensor and Feedforward Neural Network[C]//ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2015:V002T06A004-V002T06A004
[9] Yu B, Zhang Y. Fault-Tolerant Control of a Boeing 747-100/200 Based on a Laguerre Function-Based MPC Scheme[J]. International Federation of Automatic Control, 2016, 49(17):58-63
[10] Oh K H, Ahn H S. Extended Kalman Filter with Multi-Frequency Reference Data for Quadrotor Navigation[C]//2015 15th International Conference on Control, Automation and Systems, 2015:201-206
[11] Yu B, Zhang Y, Qu Y. MPC-Based FTC with FDD against Actuator Faults of UAVs[C]//2015 15th International Conference on Control, Automation and Systems, 2015:225-230
[12] 马建军, 李文强, 郑志强,等. 不确定条件下控制分配问题的鲁棒优化方法[J]. 控制理论与应用, 2010, 27(6):731-737 Ma Jianjun, Li Wenqiang, Zheng Zhiqiang, et al. Control of Allocation under Uncertainty Based on Robust Optimization[J]. Control Theory & Applications, 2010, 27(6):731-737 (in Chinese)
[13] 江未来,董朝阳,王通,等. 基于控制分配的一类变体飞行器容错控制[J]. 北京航空航天大学学报,2014,40(3):355-359 Jiang Weilai, Dong Chaoyang, Wang Tong, et al. Fault Tolerant Control Based on Control Allocation for Morphing Aircraft Model[J]. Journal of Beijing University of Aeronautics & Astronautics, 2014, 40(3):355-359 (in Chinese)
[14] Roy T K, Garratt M, Pota H R, et al. Robust Backstepping Control for Longitudinal and Lateral Dynamics of Small Scale Helicopter[J]. Journal of University of Science & Technology of China, 2012, 42(7):546-555
[15] 李一波, 陈超, 张晓林,等. 改进LQR技术的飞翼式无人机控制算法研究[J]. 控制工程, 2014, 21(5):628-633 Li Yibo, Chen Chao, Zhang Xiaoli, et al. Research on Control Algorithm for Flying Wing UAV Based on Improved LQR Technology[J]. Control Engineering of China, 2014, 21(5):628-633 (in Chinese)
[16] Jansuya P, Kumsuwan Y. Design of MATLAB/Simulink Modeling of Fixed-Pitch Angle Wind Turbine Simulator[J]. Energy Procedia, 2013, 34(40):362-370