论文:2017,Vol:35,Issue(1):103-108
引用本文:
刘汉儒, 王掩刚, 张俊. 尾缘多孔结构流动控制影响的数值研究[J]. 西北工业大学学报
Liu Hanru, Wang Yangang, Zhang Jun. Numerical Simulation of the Effects of Porous-Trailing-Edge on Flow Control[J]. Northwestern polytechnical university

尾缘多孔结构流动控制影响的数值研究
刘汉儒, 王掩刚, 张俊
西北工业大学 动力与能源学院, 陕西 西安 7120072
摘要:
以多孔尾缘结构NACA0012翼型为研究对象,通过数值模拟手段研究了不同迎角下的流动和气动噪声影响。研究结果表明:该多孔尾缘结构在较大迎角时(α≥10°),能够降低1 000 Hz以下低频范围噪声约4 dB。相对于原基准翼型,多孔尾缘翼型的最大升阻比减少约为8%,能够降噪的同时不造成过大的气动性能改变。进一步的流场分析表明,多孔尾缘结构流动控制降低噪声的关键物理机理是:上下面压力差驱动充足气流穿过多孔区形成"微射流",对分离块进行破坏,从而衰减叶片表面的气动载荷波动,引起气动噪声降低。
关键词:    叶片/翼型    多孔尾缘    流动控制    降低噪声   
Numerical Simulation of the Effects of Porous-Trailing-Edge on Flow Control
Liu Hanru, Wang Yangang, Zhang Jun
School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The NACA0012 airfoil with porous trailing edge(TE) is used to numerically investigate the effects on flow and aerodynamics noise at various angles of attack(AOA). It is found that at the high AOA (α ≥ 10° before stall), the present porous TE design can reduce the noise by about 4 dB, below frequency of 1000 Hz. Comparing with the baseline airfoil, the present porous TE airfoil cause the maximum loss of lift-drag ratio is 8%, which means it can reduce noise without huge aerodynamics decay. The further flow analysis indicates the significant physical mechanisms for TE noise reduction that the pressure difference between suction and pressure surface drives air fluids permeate through porous area to generate micro-jet which breaks the separation bubble above TE. It consequently produces the attenuation of pressure fluctuation and noise reduction.
Key words:    blade/airfoil    porous trailing edge    flow control    noise reduction   
收稿日期: 2016-04-01     修回日期:
DOI:
基金项目: 国家自然科学基金(51506179)与中央高校基本科研业务费(3102016ZY018)资助
通讯作者:     Email:
作者简介: 刘汉儒(1985-),西北工业大学讲师,主要从事流动控制及气动噪声降低研究。
相关功能
PDF(3645KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘汉儒  在本刊中的所有文章
王掩刚  在本刊中的所有文章
张俊  在本刊中的所有文章

参考文献:
[1] Finez A, Roger M, Jondeau E, et al. Broadband Noise Reduction of Linear Cascades with Trailing Edge Serrations[R]. AIAA-2011-2874
[2] Vathylakis A, Chong T P, Joseph P F. Poro-Serrated Trailing-Edge Devices for Airfoil Self-Noise Reduction[J]. AIAA Journal, 2015, 53(11):3379-3394
[3] Gruber M, Joseph P F, Chong T P. On the Mechanisms of Serrated Airfoil Trailing Edge Noise Reduction[R]. AIAA-2011-2781
[4] Moreau D J, Doolan C J. Noise-Reduction Mechanism of a Flat-Plate Serrated Trailing Edge[J]. AIAA Journal, 2013, 51(10):2513-2522
[5] Chong T P and Vathylakis A. On the Aeroacoustic and Flow Structures Developed on a Flat Plate with A Serrated Sawtooth Trailing Edge[J]. Journal of Sound and Vibration, 2015, 354:65-90
[6] Ji L, Qiao W, Wang L, et al. Experimental and Numerical Study on Noise Reduction Mechanisms of an Airfoil with Serrated Trailing Edge[R]. AIAA-2014-3297
[7] Geyer T, Sarradj E and Fritzsche C. Measurement of the Noise Generation at the Trailing Edge of Porous Airfoils[J]. Experiments in Fluids, 2010, 48(2):291-308
[8] Finez A, Jondeau E, Roger M, et al. Broadband Noise Reduction with Trailing Edge Brushes[R]. AIAA-2010-3980
[9] Herr M. Design Criteria for Low-Noise Trailing-Edges[R]. AIAA-2007-3470
[10] Herr M, Reichenberger J. In Search of Airworthy Trailing-Edge Noise Reduction Means[R]. AIAA-2011-2780
[11] Chanaud R C. Noise Reduction in Propeller Fans Using Porous Blades at Free-Flow Conditions[J]. The Journal of the Acoustical Society of America, 1972, 51(1A):15-18
[12] Chanaud R C, Kong N, Sitterding R B. Experiments on Porous Blades as a Means of Reducing Fan Noise[J]. The Journal of the Acoustical Society of America, 1976, 59(3):564-575
[13] Khorrami M R, Choudhari M M. Application of Passive Porous Treatment to Slat Trailing Edge Noise[R]. USA, NASA, 2003, 212416
[14] Lockard D P, Lilley G M. The Airframe Noise Reduction Challenge[R]. USA, NASA, 2004, 213013
[15] Jaworski J W, Peake N. Aerodynamic Noise from A Poroelastic Edge with Implications for the Silent Flight of Owls[J]. Journal of Fluid Mechanics, 2013, 723:456-479
[16] Fassmann B W, Rautmann C, Ewert R. Prediction of Porous Trailing Edge Noise Reduction via Acoustic Perturbation Equations and Volume Averaging[R]. AIAA-2015-2525
[17] 刘刚,马率,黄勇,牟斌. 被动孔隙控制的数值模拟研究[J]. 空气动力学学报, 2007, 25(1):85-91 Liu Gang, Ma Shuai, Huang Yong, Mou Bin. Numerical Simulation of Flow over Porous Surface[J]. Acta Aerodynamic Sinica, 2007, 25(1):85-91(in Chinese)
[18] Li Y, Wang X, Chen Z, et al. Experimental Study of Vortex-Structure Interaction Noise Radiated from Rod-Airfoil Configurations[J]. Journal of Fluids and Structures, 2014, 51:313-325
[19] Ge C, Zhang Z, Liang P, et al. Prediction and Control of Trailing Edge Noise Based on Bionic Airfoil[J]. Science China Technological Sciences, 2014, 57(7):1462-1470
[20] Vafai K. Convective Flow and Heat Transfer in Variable-Porosity Media[J]. Journal of Fluid Mechanics, 1984, 147(1):233-259
[21] Hsu C, Cheng P. Thermal Dispersion in a Porous Medium[J]. International Journal of Heat and Mass Transfer, 1990, 33(8):1587-1597
[22] Williams J F, Hawkings D L. Sound Generation by Turbulence and Surfaces in Arbitrary Motion[J]. Philosophical Trans of the Royal Society of London, Series A, Mathematical, Physical and Engineering Sciences, 1969, 264(1151):321-342
[23] Brentner K S, Farassat F. An Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation for Moving Surfaces[C]//American Helicopter Society 53rd Annual Forum, 1997
[24] Williams J, Hall L. Aerodynamic Sound Generation by Turbulent flow in the Vicinity of a Scattering Half Plane[J]. Journal of Fluid Mechanics, 1970, 40(4):657-670
[25] Drela M. XFOIL:An Analysis and Design System for Low Reynolds Number Airfoils[C]//Low Reynolds Number Aerodynamics, Springer, 1989
[26] Abbott I H, Von Doenhoff A E. Theory of Wing Sections:Including a Summary of Airfoil Data[M]. New York, Courier Dover Publications, 2012
[27] Ladson C L. Effect of Independent Variation of Mach and Reynolds Number on the Low-Speed Aerodynamic Characteristics of the NACA0012 Airfoil Section[R]. NASA TM4074, 1988