论文:2017,Vol:35,Issue(1):82-89
引用本文:
张晓宇, 王润孝, 王战玺, 张顺琦, 秦现生, 谭小群. 基于双重积分模型抗扰控制的压电薄壁结构振动控制[J]. 西北工业大学学报
Zhang Xiaoyu, Wang Runxiao, Wang Zhanxi, Zhang Shunqi, Qin Xiansheng, Tan Xiaoqun. Vibration Control of Piezoelectric Integrated Thin-Walled Structures Using Disturbance Rejection Control with Double Integral Model[J]. Northwestern polytechnical university

基于双重积分模型抗扰控制的压电薄壁结构振动控制
张晓宇1, 王润孝1, 王战玺1, 张顺琦1,2, 秦现生1, 谭小群1
1. 西北工业大学 机电学院, 陕西 西安 710072;
2. 南京航空航天大学 机械结构力学及控制国家重点实验室, 江苏 南京 210016
摘要:
针对扰动频率未知或随机变化的情况下的压电智能结构振动控制,提出并开发了一种双重积分模型抗扰控制算法并将其用于压电层合梁的振动控制。首先建立了双重积分状态空间模型并将外力扰动、系统非线性部分、建模误差等物理扰动和部分系统状态变量归纳于广义扰动。其次借助于双重积分模型的特殊结构,对系统进行解耦并应用极点配置法设计了具有快速收敛速度的PI观测器和抗扰控制器。该PI观测器能够快速准确地观测广义扰动和系统状态变量并通过抗扰控制器将其反馈至系统以控制振动。最后通过对具有并列压电致动器和传感器的智能悬臂梁的振动控制仿真验证了这种双重积分模型的抗扰控制算法,并与使用GPI观测器的抗扰控制算法的控制效果进行了比较。结果表明:该双重积分模型抗扰控制算法能够有效地控制由频率未知或者随机变化的扰动引起的振动,且其振动控制性能优于使用GPI观测器的抗扰控制算法。
关键词:    抗扰    控制器    智能结构    振动控制    压电致动器   
Vibration Control of Piezoelectric Integrated Thin-Walled Structures Using Disturbance Rejection Control with Double Integral Model
Zhang Xiaoyu1, Wang Runxiao1, Wang Zhanxi1, Zhang Shunqi1,2, Qin Xiansheng1, Tan Xiaoqun1
1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:
Aiming at vibration control of piezoelectric smart structures excited by disturbances with frequencies unknown or varying randomly, a disturbance rejection control with double integral model is proposed and developed in this paper. Firstly a double integral state space model of the system is built, and in the meantime, part of system state variables and physical disturbances including external forces, system nonlinearities, modelling errors were summarized as generalized disturbances. Secondly the system is easily decoupled as a result of the advantage of the specific double integral structure, then a proportional integral (PI) observer and a disturbance rejection controller both with fast converging speed are designed. Generalized disturbances are observed accurately and rapidly by the PI observer and fed back to the system through the disturbance rejection controller to control vibrations. Lastly the disturbance rejection control with double integral model is validated through simulations of vibration control of cantilevered smart beam with collocated piezoelectric actuator and sensor. Furthermore, disturbance rejection control with GPI observer is also implemented in the simulations and comparisons are made between the two controllers. The results illustrate that the disturbance rejection control with double integral model is able to effectively control vibrations caused by disturbances with frequencies unknown or varying randomly, and the vibration control performance of it is better than that of the disturbance rejection control with GPI observer.
Key words:    disturbance rejection    controllers    smart structures    vibration control    piezoelectric actuator   
收稿日期: 2016-09-18     修回日期:
DOI:
基金项目: 国家自然科学基金(51505380、51475373、51375390)、南京航空航天大学机械结构力学及控制国家重点实验室开放基金(MCMS-0517G01)资助
通讯作者:     Email:
作者简介: 张晓宇(1987-),西北工业大学博士研究生,主要从事智能结构振动控制和机器人振动控制研究。
相关功能
PDF(1298KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张晓宇  在本刊中的所有文章
王润孝  在本刊中的所有文章
王战玺  在本刊中的所有文章
张顺琦  在本刊中的所有文章
秦现生  在本刊中的所有文章
谭小群  在本刊中的所有文章

参考文献:
[1] Wang Z, Qin X, Yang H T Y. Active Suppression of Panel Flutter with Piezoelectric Actuators Using Eigenvector Orientation Method[J]. Journal of Sound and Vibration, 2012, 331(7):1469-1482
[2] Omidi E, Mahmoodi S N. Vibration Control of Collocated Smart Structures Using H Modified Positive Position and Velocity Feedback[J]. Journal of Vibration and Control, 2016, 22(10):2434-2442
[3] Zhong M F, Deng Z C, Wang Z J. Finite Element Analysis and Vibration Control of Piezoelectric Laminated Plates Based on Precise Integration[J]. Journal of Northwestern Polytechnical University, 2010, 28(1):123-128
[4] Kapuria S, Yasin M Y. Active Vibration Control of Piezoelectric Laminated Beams with Electroded Actuators and Sensors Using an Efficient Finite Element Involving an Electric Node[J]. Smart Materials and Structures, 2010, 19(4):045019
[5] Qiu Z C, Han J D, Zhang X M, et al. Active Vibration Control of A Flexible Beam Using a Non-Collocated Acceleration Sensor and Piezoelectric Patch Actuator[J]. Journal of Sound and Vibration, 2009, 326(3/4/5):438-455
[6] Dubay R, Hassan M, Li C, et al. Finite Element Based Model Predictive Control for Active Vibration Suppression of a One-Link Flexible Manipulator[J]. ISA Transactions, 2014, 53(5):1609-1619
[7] Marinaki M, Marinakis Y, Stavroulakis G E. Fuzzy Control Optimized by a Multi-Objective Differential Evolution Algorithm for Vibration Suppression of Smart Structures[J]. Computers & Structures, 2015, 147:126-137
[8] Yang Z C, Wang W, Gu Y S, et al. Smart Structure Vibration Control Using a New Bending Type of Piezoelectric Stack Actuator[J]. Journal of Vibration & Shock, 2009, 28(9):130-134
[9] Müller P C, Lückel J. Optimal Multivariable Feedback System Design with Disturbance Rejection[J]. Problems of Control and Information Theory, 1977, 6(3):211-227
[10] Zhang S Q, Li H N, Schmidt R, et al. Disturbance Rejection Control for Vibration Suppression of Piezoelectric Laminated Thin-Walled Structures[J]. Journal of Sound and Vibration, 2014, 333(5):1209-1223
[11] Zhang S Q, Schmidt R, Müller P C, et al. Disturbance Rejection Control for Vibration Suppression of Smart Beams and Plates under A High Frequency Excitation[J]. Journal of Sound and Vibration, 2015, 353:19-37
[12] Zhang S Q, Schmidt R. Large Rotation FE Transient Analysis of Piezolaminated Thin-Walled Smart Structures[J]. Smart Materials and Structures, 2013, 22(10):105025
[13] Zhang S Q, Schmidt R. Static and Dynamic FE Analysis of Piezoelectric Integrated Thin-Walled Composite Structures with Large Rotations[J]. Composite Structures, 2014, 112:345-357
[14] S ffker D, Yu T J, Müller P C. State Estimation of Dynamical Systems with Nonlinearities by Using Proportional-Integral Observer[J]. International Journal of Systems Science, 1995, 26(9):1571-1582
相关文献:
1.张书扬, 张顺琦, 李靖, 白晶, 秦现生.基于PID算法的压电智能结构形状与主动振动控制[J]. 西北工业大学学报, 2017,35(1): 74-81