基于自适应滑模观测器的五相永磁同步电机无位置传感器控制 -- 西北工业大学学报,2016,34(6):1057-1064
论文:2016,Vol:34,Issue(6):1057-1064
引用本文:
杨剑威, 窦满峰, 赵冬冬, 颜黎明, 方淳. 基于自适应滑模观测器的五相永磁同步电机无位置传感器控制[J]. 西北工业大学学报
Yang Jianwei, Dou Manfeng, Zhao Dongdong, Yan Liming. Adaptive Sliding Mode Observer for Sensorless Control of Five-Phase Permanent Magnet Synchronous Motor[J]. Northwestern polytechnical university

基于自适应滑模观测器的五相永磁同步电机无位置传感器控制
杨剑威, 窦满峰, 赵冬冬, 颜黎明, 方淳
西北工业大学 自动化学院, 陕西 西安 710072
摘要:
由于三次谐波的影响,三相永磁同步电机的无位置传感器控制方法无法直接应用于五相永磁同步电机无位置传感器控制。在考虑三次谐波电压和电流的条件下,提出一种基于自适应滑模观测器的五相永磁同步电机无位置传感器控制方法。该方法首先利用带三次谐波的五相永磁同步电机模型设计了滑模观测器,并用sigmoid函数代替一般滑模观测器常用的符号函数作为观测器的开关函数,以减小滑模抖动并获得更为准确的反电势当量信号。其次设计了反电势自适应观测器以估计电机转速和位置信号,消除了常规无位置传感器控制系统中所必需的低通滤波器和相位补偿单元,提高了转速和位置信号的估计精度。此外,利用李雅普诺夫准则,证明了所设计的滑模观测器和反电势自适应观测器的稳定性,并利用Matlab/Simulink进行了仿真实验。仿真结果显示,与常规滑模观测器相比,所提出的自适应滑模观测器在五相永磁同步电机无位置传感器控制系统中抖动更小,转速和位置估计误差更小,反电势估计更为准确,具有较强的鲁棒性。
关键词:    五相永磁同步电机    无位置传感器控制    自适应滑模观测器    李雅普诺夫准则   
Adaptive Sliding Mode Observer for Sensorless Control of Five-Phase Permanent Magnet Synchronous Motor
Yang Jianwei, Dou Manfeng, Zhao Dongdong, Yan Liming
School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
For the impact of the third harmonic, the sensorless control method for three-phase permanent magnet synchronous motor (PMSM) can't be applied for five-phase PMSM directly. This paper investigates the position sensorless control problem of five-phase PMSM drive system based on an adaptive sliding mode observer (ASMO) with the consideration of the third harmonic voltage and current. First, a sliding mode current observer is designed based on the five-phase PMSM model with the third harmonic by replacing the conventional sign function with the sigmoid function as the switching function to reduce the chattering and obtain the equivalent signal of the back electromotive force (EMF). Then, an adaptive observer of back EMF is built to estimate the back EMF, the velocity and the rotor position of five-phase PMSM, which eliminates the low-pass filter and phase compensation module in sensorless control system and improves the estimation accuracy. Meanwhile, the stability of the sliding current observer and the back EMF adaptive observer is demonstrated in detail by Lyapunov stability criteria and the simulation is done by Matlab/Simulink. The simulation results show that compared with the conventional SMO, the proposed ASMO is with less chattering, small errors of rotor speed and position, more accurate estimated value of back EMF and strong robustness.
Key words:    five-phase permanent magnet synchronous motor (five-phase PMSM)    sensorless control    adaptive sliding mode observer (ASMO)    Lyapunov stability criteria    Lyapunov functions    angular velocity    MATLAB   
收稿日期: 2016-09-08     修回日期:
DOI:
基金项目: 国家自然科学基金(51507143)与陕西省工业科技攻关项目(2015GYT090)资助
通讯作者:     Email:
作者简介: 杨剑威(1986-),西北工业大学博士研究生,主要从事电机驱动控制及电力电子方向的研究。
相关功能
PDF(1982KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杨剑威  在本刊中的所有文章
窦满峰  在本刊中的所有文章
赵冬冬  在本刊中的所有文章
颜黎明  在本刊中的所有文章
方淳  在本刊中的所有文章

参考文献:
[1] Nguyen N, Meinguet F, Semail E, et al. Fault-Tolerant Operation of an Open-End Winding Five-Phase PMSM Drive with Short-Circuit Inverter Fault[J]. IEEE Trans on Industrial Electronics, 2016, 63(1):595-605
[2] Mohammadpour A, Parsa L. Global Fault-Tolerant Control Technique for Multiphase Permanent-Magnet Machines[J]. IEEE Trans on Industry Applications, 2015, 51(1):178-186
[3] Mohammadpour A, Parsa L. A Unified Fault-Tolerant Current Control Approach for Five-Phase PM Motors With Trapezoidal Back EMF Under Different Stator Winding Connections[J]. IEEE Trans on Power Electronics, 2013, 28(7):3517-3527
[4] Trabelsi M, Nguyen N K, Semail E. Real-Time Switches Fault Diagnosis Based on Typical Operating Characteristics of Five-Phase Permanent-Magnetic Synchronous Machines[J]. IEEE Trans on Industrial Electronics, 2016, 63(8):4683-4694
[5] Pacas M. Sensorless Drives in Industrial Applications[J]. IEEE Industrial Electronics Magazine, 2011, 5(2):16-23
[6] Buccella C, Cecati C, Latafat H. Digital Control of Power Converters-A Survey[J]. IEEE Trans on Industrial Informatics, 2012, 8(3):437-447
[7] Ramezani M, Ojo O. The Modeling and Position-Sensorless Estimation Technique for A Nine-Phase Interior Permanent-Magnet Machine Using High-Frequency Injections[J]. IEEE Trans on Industry Applications, 2016, 52(2):1555-1565
[8] Wang G, Zhan H, Zhang G, et al. Adaptive Compensation Method of Position Estimation Harmonic Error for EMF-Based Observer in Sensorless IPMSM Drives[J]. IEEE Trans on Power Electronics, 2014, 29(6):3055-3064
[9] Guo L, Parsa L. Model Reference Adaptive Control of Five-Phase IPM Motors Based on Neural Network[J]. IEEE Trans on Industrial Electronics, 2012, 59(3):1500-1508
[10] Quang N K, Hieu N T, Ha Q P. FPGA-Based Sensorless PMSM Speed Control Using Reduced-Order Extended Kalman Filters[J]. IEEE Trans on Industrial Electronics, 2014, 61(12):6574-6582
[11] Wang G, Li T, Zhang G, et al. Position Estimation Error Reduction Using Recursive-Least-Square Adaptive Filter for Model-Based Sensorless Interior Permanent-Magnet Synchronous Motor Drives[J]. IEEE Trans on Industrial Electronics, 2014, 61(9):5115-5125
[12] Gao, Y, Liu W G, Yang Q. Study of Position Sensorless Control Based on Sliding Mode Observer[C]//International Conference on Electrical Machines and Systems, 2011:1-3
[13] Lee H, Lee J. Design of Iterative Sliding Mode Observer for Sensorless PMSM Control[J]. IEEE Trans on Control Systems Technology, 2013, 21(4):1394-1399
[14] Qiao Z, Shi T, Wang Y, et al. New Sliding-Mode Observer for Position Sensorless Control of Permanent-Magnet Synchronous Motor[J]. IEEE Trans on Industrial Electronics, 2013, 60(2):710-719