论文:2016,Vol:34,Issue(5):907-914
引用本文:
王悦, 刘宏, 彭波, 佟瑞庭. 基于刚柔耦合的新型航天飞行器舱门锁紧机构捕获域研究[J]. 西北工业大学学报
Wang Yue, Liu Hong, Peng Bo, Tong Ruiting. Studies on Capture Field of Latch Mechanism of New Spacecraft Door Based on Rigid-Flexible Coupling[J]. Northwestern polytechnical university

基于刚柔耦合的新型航天飞行器舱门锁紧机构捕获域研究
王悦1,2, 刘宏1, 彭波2, 佟瑞庭3
1. 哈尔滨工业大学 机器人技术与系统国家重点实验室, 黑龙江 哈尔滨 150001;
2. 中国运载火箭技术研究院 研究发展中心, 北京 100076;
3. 西北工业大学 陕西省机电传动与控制工程实验室, 陕西 西安 710072
摘要:
针对新型航天飞行器舱门单侧展收机构故障的工况,基于刚柔耦合技术,研究了舱门中心锁紧机构捕获域的变化情况。建立了舱门主体结构模型,将舱门内外蒙皮、内埋框和大梁设置为柔体,研究了大梁间距以及大梁数目对中心锁紧机构捕获域的影响,并针对不同大梁数目情况下的大梁间距进行了优化设计。此外,考虑空间高低温环境,研究了极限温度下热变形对舱门中心锁紧机构捕获域的影响。结果表明:舱门单侧展收机构故障时,大梁间距对舱门中心锁捕获域有一定的影响,捕获域随大梁数目的增大而减小,但其影响有限。原有3根大梁的设计,大梁间距的最优值为1.163 m,对应捕获域增大3.505 mm;大梁数目为2根时,大梁间距最优值为2.326 m,捕获域增大3.556 mm,而大梁数目为5根时,大梁间距最优值为0.581 5 m,捕获域增大3.394 mm。因此,在满足捕获域要求的前提下,可采用2根大梁。与常温环境相比,高温环境捕获域增大,不利于舱门闭合,而低温环境更有利于舱门闭合。
关键词:    舱门    锁紧机构    捕获域    刚柔耦合    优化设计   
Studies on Capture Field of Latch Mechanism of New Spacecraft Door Based on Rigid-Flexible Coupling
Wang Yue1,2, Liu Hong1, Peng Bo2, Tong Ruiting3
1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China;
2. Research and Development Center, China Academy of Launch Vehicle Technology, Beijing 100076, China;
3. Shaanxi Engineering Laboratory for Transmissions and Controls, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Considering the failure of one-sided deployable mechanism, the capture field of central latch mechanism of new spacecraft door is investigated based on rigid-flexible coupling. The main structure of spacecraft door is modeled. Internal and external skins, internal embedded frames, and internal girders are modeled as flexible, and the influence of number of internal girders and spacing between two internal girders on the capture field of central latch mechanism are studied. In addition, the spacing between two internal girders is optimized under different number of internal girders. Moreover, the influence of thermal deformation on the capture field under the space temperature is also considered and investigated. The results show that there are light effects of spacing between two internal girders and the number of the internal girders on the capture field, and the capture fields decrease as the increase of the number of the internal girders. For the original design with 3 internal girders, the optimal value of the spacing between two internal girders is 1.163 m, and the corresponding capture field increases 3.505 mm. When the number of the internal girders is 2, the optimal value of the spacing between two internal girders is 2.326 m, and the capture field increases 3.556 mm. For the case of 5 internal girders, the optimal value of the spacing between two internal girders is 0.5815m, and the capture field increases 3.394 mm. Therefore, one can choose 2 internal girders if the corresponding capture field is under control. Compared with room temperature, the capture field under high temperature will be enhanced, while low temperature can contribute to reducing the capture field.
Key words:    new spacecraft door    latch mechanism    capture field    rigid-flexible coupling    optimal design   
收稿日期: 2016-03-02     修回日期:
DOI:
通讯作者:     Email:
作者简介: 王悦(1977-),哈尔滨工业大学博士研究生,主要从事新型航天飞行器设计与研究。
相关功能
PDF(1569KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王悦  在本刊中的所有文章
刘宏  在本刊中的所有文章
彭波  在本刊中的所有文章
佟瑞庭  在本刊中的所有文章

参考文献:
[1] Martin J C, Law G W. Suborbital Reusable Launch Vehicles and Applicable Market[R]. The Aerospace Corporation Report, 2002
[2] Craig C. Air Force X-37B Wings Into Space[J]. Aerospace America, 2010, 10:34-39
[3] 周少程. 轨道飞行器舱门可重复锁紧机构的研制[D]. 哈尔滨:哈尔滨工业大学,2014 Zhou Shaocheng. The Design and Research on Reusable Latch Mechanism for Orbiter Door[D]. Harbin, Harbin Institute of Technology, 2014(in Chinese)
[4] Grunbin C. Docking Dynamics for Rigid-Body Spacecraft[J]. AIAA Journal, 1964, 2(1):5-12
[5] Erkaya S. Investigation of Joint Clearance Effects on Welding Robot Manipulators[J]. Robotics and Computer Integrated Manufacturing, 2012, 28(4):449-457
[6] Akhadkar C A, Deoghare A B, Vaigya A M. Influence of Joint Clearance on Kinematic and Dynamic Parameters of Mechanism[J]. IOSR Journal of Mechanical and Civil Engineering, 2014, 10(6):39-52
[7] 张华,肖余之,陈萌,等. 空间对接机构对接锁系同步性仿真研究[J]. 航空学报,2009,30(1):310-314 Zhang Hua, Xiao Yuzhi, Chen Meng, et al. Study on Synchronization of Space Docking Mechanism's Docking Lock[J]. Journal of Astronautics, 2009, 30(1):310-314(in Chinese)
[8] Chen Y, Sun Y, Chen C. Dynamic Analysis of a Planar Slider-Crank Mechanism with Clearance for a High Speed and Heavy Load Press System[J]. Mechanism and Machine Theory, 2016, 98:81-100
[9] 张锐. 某型飞机前起落架收放机构及舱门开度分析[D]. 南京:南京航空航天大学,2011 Zhang Rui. Analysis of the Retraction Extend Mechanism and the Door Open Size of a Type of Nose Landing Gear[D]. Nanjing, Nanjing University of Aeronautics and Astronautics, 2011(in Chinese)
[10] Schwab A L, Meijaard J P, Meijers P. A Comparison of Revolute Joint Clearance Models in the Dynamic Analysis of Rigid and Elastic Mechanical Systems[J]. Mechanism and Machine Theory, 2002, 37:895-913
[11] Khemili I, Romdhane L. Dynamic Analysis of a Flexible Slider-Crank Mechanism with Clearance[J]. European Journal of Mechanics A/Solid, 2008, 27:882-898
[12] Zhao Y, Bai Z F. Dynamics Analysis of Space Robot Manipulator with Joint Clearance[J]. Acta Astronautica, 2011, 68:1147-1155
[13] Wang H, Yu T X, Pang H, Song B F. Mechanism Reliability Simulation Analysis for Multi-Support Axis Seizure Considered Assembly Tolerance[C]//International Conference on Quality, Reliability, Risk, Maintenance, & Safety Engineering, 2011:35-41
[14] 岳宝增,宋晓娟. 具有刚-柔-液-控耦合的航天器动力学研究进展[J]. 力学进展,2013,43(1):162-172 Yue Baozeng, Song Xiaojuan. Advances in Rigid-Flexible-Liquid-Control Coupling Dynamics of Spacecraft[J]. Advances in Mechanics, 2013, 43(1):162-172(in Chinese)
[15] 蒋建平,李东旭. 带太阳帆板航天器刚柔耦合动力学研究[J]. 航空学报,2006,27(3):418-422 Jiang Jianping, Li Dongxu. Research on Rigid-Flexible Coupling Dynamics of Spacecraft with Solar Panel[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3):418-422(in Chinese)
[16] 洪嘉振. 计算多体系统动力学[M]. 北京:高等教育出版社,1999 Hong Jiazhen. Computational Dynamics of Multibody Systems[M]. Beijing, Higher Education Press, 1999(in Chinese)