基于遗传算子采样的自适应代理优化算法 -- 西北工业大学学报,2016,34(4):614-620
论文:2016,Vol:34,Issue(4):614-620
引用本文:
宋保维, 王新晶, 王鹏. 基于遗传算子采样的自适应代理优化算法[J]. 西北工业大学学报
Song Baowei, Wang Xinjing, Wang Peng. An Adaptive Surrogate-Based Optimization Algorithm Assisted by Genetic Operators Sampling[J]. Northwestern polytechnical university

基于遗传算子采样的自适应代理优化算法
宋保维, 王新晶, 王鹏
西北工业大学 航海学院, 陕西 西安 710072
摘要:
提出一种应用于黑盒问题(black-box problem)的优化算法,称为遗传算子采样(genetic operator sampling,GOS)自适应代理优化算法。通过对当前样本进行两两交叉,对当前最优样本进行高斯变异2种算子获得候选样本集。对候选样本进行适应性评估,评估标准为候选样本处的交叉验证误差和该样本与父代样本之间最小距离的乘积,将乘积最大的样本加入已有样本集。GOS优化算法在一维问题中详细阐述,与有效全局优化算法(efficient global optimization,EGO)和最大化模型误差算法(maximum square error,MSE)在3个典型数学算例中进行对比,验证该算法的有效性。
关键词:    代理模型    遗传算子    采样准则    代理优化   
An Adaptive Surrogate-Based Optimization Algorithm Assisted by Genetic Operators Sampling
Song Baowei, Wang Xinjing, Wang Peng
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
This paper proposes an optimization algorithm that is applied to Black-box Problem, called Genetic Operator Sampling (GOS) adaptive surrogate-based optimization algorithm. Genetic operators produce candidate sample set. Cross-over operator is executed between any two of samples and mutation operator is executed only on present best sample. Then an assessment criterion, which is the product of the cross validation error of the candidate sample and the minimum distance between it and existing samples, is used to judge the adaptation of each sample. The candidate sample with largest product will be added to existing samples. GOS is illustrated on 1-D function in detail and is compared to EGO and MSE algorithm on three typical functions, the results validated the effectiveness of GOS algorithm.
Key words:    surrogate model    genetic operators    sampling criterion    surrogate-based optimization   
收稿日期: 2015-10-22     修回日期:
DOI:
基金项目: 国家自然科学基金(51375389)资助
通讯作者:     Email:
作者简介: 宋保维(1963-),西北工业大学教授、博士生导师,主要从事水下航行器设计及多学科设计优化等研究。
相关功能
PDF(2310KB) Free
打印本文
把本文推荐给朋友
作者相关文章
宋保维  在本刊中的所有文章
王新晶  在本刊中的所有文章
王鹏  在本刊中的所有文章

参考文献:
[1] Jones D R, Schonlau M, Welch W J. Efficient Global Optimization of Expensive Black-Box Functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492
[2] 赵敏, 操安喜, 苟鹏, 等. 高效优化算法在船舶力学中的应用研究[J]. 船舶力学, 2008, 12(3): 473-482 Zhao Min, Cao Anxi, Gou Peng, et al. Application of Efficient Global Optimization in Ship Mechanics[J]. Journal of Ship Mechanics, 2008, 12(3): 473-482 (in Chinese)
[3] Lei G. Sequential Optimization Method for the Design of Electromagnetic Device[J]. IEEE Trans on Magnetics, 2008, 44(11): 3217-3220
[4] 邓枫, 覃宁, 伍贻兆. EGO方法的训练算法及应用[J]. 计算物理, 2012, 29(3): 326-332 Deng Feng, Qin Ning, Wu Yizhao. Training Algorithms for EGO Method and Applications[J]. Chinese Journal of Computational Physics, 2012, 29(3): 326-332 (in Chinese)
[5] 邹林君, 吴义忠, 毛虎平. Kriging模型的增量构造及其在全局优化中的应用[J]. 计算机辅助设计与图形学学报, 2011, 23(4): 649-655 Zou Linjun, Wu Yizhong, Mao Huping. Incremental Kriging Model Rebuilding Method and Its Application in Efficient Global Optimization[J]. Journal of Computer-Aided Design and Computer Graphics, 2011, 23(4): 649-655 (in Chinese)
[6] 冯敏, 张建同. 基于改进Kriging模型的EGO算法的EI函数研究[C]//第十届中国不确定系统年会, 2012 Feng Min, Zhang Jiantong. Expected Improvement in Efficient Global Optimization based on Bootstrapped Kriging[C]//The tenth China Annual Conference on Uncertainty, 2012 (in Chinese)
[7] Huang D, Allen T T, Notz W I, et al. Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models[J]. Journal of Global Optimization, 2006, 34(3): 441-466
[8] Mehmani A. Surrogate-Based Design Optimization with Adaptive Sequential Sampling[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2012
[9] 高月华, 王希诚. 基于Kriging代理模型的多点加点序列优化方法[J]. 工程力学, 2012, 29(4): 90-95 Gao Yuehua, Wang Xicheng. A Sequential Optimization Method with Multi-Point Sampling Criterion Based on Kriging Surrogate Model[J]. Engineering Mechanics, 2012, 29(4): 90-95 (in Chinese)
[10] Viana F A, Haftka R T, Watson L T. Efficient Global Optimization Algorithm Assisted by Multiple Surrogate Techniques[J]. Journal of Global Optimization, 2013, 56(2): 669-689
[11] Lophaven S N, Nielsen H B, Søndergaard J. DACE-A Matlab Kriging Toolbox[EB/OL]. (2002-8-1)[2015-10-22].http://www2.imm.dtu.dk/~hbn/dace/.
[12] Viana F A C. SURROGATES Toolbox User's Guide[EB/OL]. [2015-10-22].http://sites.google.com/site/felipeacviana/surrogatestoolbox.