论文:2016,Vol:34,Issue(3):437-442
引用本文:
张强, 祝小平, 周洲, 王伟. 基于CFD/CSD耦合的连结翼静气动弹性计算研究[J]. 西北工业大学学报
Zhang Qiang, Zhu Xiaoping, Zhou Zhou, Wang Wei. Numerical Research on Static Aeroelasticity of Joined Wing Based on CFD/CSD Coupling[J]. Northwestern polytechnical university

基于CFD/CSD耦合的连结翼静气动弹性计算研究
张强1,2, 祝小平2, 周洲1,2, 王伟1,2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 无人机特种技术重点实验室, 陕西 西安 710065
摘要:
针对某连结翼布局无人机,采用松耦合方式,耦合计算流体力学(CFD)和计算结构动力学(CSD)对其静气动弹性进行了计算研究;CFD求解模块采用非定常雷诺平均N-S方程,CSD模块采用直接积分法求解结构动力学方程,在时域内推进求解,收敛后获得静气弹计算结果。研究表明:连结翼静气弹变形后,前翼发生负扭转,后翼发生正扭转,前翼升力损失,后翼升力增加;无论是刚体构型还是静气弹变形后,前翼和后翼的展向升力系数分布规律均存在很大差异;静气弹变形使得连结翼升力线斜率增大4.3%,纵向静稳定性导数增大145.8%,但会带来较大的低头力矩增量;与单独前翼对比表明,连结翼后翼大大限制了前翼的负扭转变形,使得升力损失降低为单独前翼的21%;与单独后翼对比表明,连结翼前翼大大限制了后翼的正扭转变形,降低了后翼扭转发散的风险;研究结果揭示了连结翼布局特殊的静气动弹性特性,对连结翼的气动/结构设计具有一定的工程指导价值。
关键词:    连结翼    静气动弹性    松耦合    扭转变形    展向升力分布    纵向静稳定    扭转发散   
Numerical Research on Static Aeroelasticity of Joined Wing Based on CFD/CSD Coupling
Zhang Qiang1,2, Zhu Xiaoping2, Zhou Zhou1,2, Wang Wei1,2
1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi'an 710065, China
Abstract:
With a joined wing configuration UAV as the study object, static aeroelasticity was numerically investigated by coupling CFD and CSD using loosely-coupled algorithm. CFD module adopts unsteady Reynolds Averaging N-S equations and CSD module adopts direct integration method to solve structural dynamic equation. Advancing solution in time domain, the static aeroelastic results are then obtained after convergence. Research shows that after static aeroelastic deformation of joined wing, the front wing twists negatively while the rear wing positively; the lift of front wing decreases while rear wing increases; the spanwise lift coefficient distribution differs greatly between front wing and rear wing; after static aeroelastic deformation, the lift curve slope and the longitudinal static stability derivative both increase, but large increment of nose down moment is produced; compared to single front wing, rear wing of joined wing restricts the deformation of front wing largely, leading to the loss of lift far less than single front wing; compared to single rear wing, front wing of joined wing restricts the positive torsional deformation of rear wing largely, which reduces the risk of divergence of rear wing. The results revealed the particular aeroelastic characteristics of joined wing configuration, which is to be of certain value to the aerodynamic and structural design of joined wing.
Key words:    joined wing    static aeroelastic    loosely couple    twist deformation    spanwise lift distribution    lift curve slope    longitudinal static stability    divergence   
收稿日期: 2016-03-15     修回日期:
DOI:
基金项目: 民机专项(MIZ-2015-F-009)、陕西省科技统筹项目(2015KTCQ01-78)资助
通讯作者:     Email:
作者简介: 张强(1991—),西北工业大学硕士研究生,主要从事无人机气动弹性研究。
相关功能
PDF(1623KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张强  在本刊中的所有文章
祝小平  在本刊中的所有文章
周洲  在本刊中的所有文章
王伟  在本刊中的所有文章

参考文献:
[1] Wolkvitch J. The Joined Wing: An Overview[J]. Journal of Aircraft, 1986, 23(3): 161-178
[2] Livne E. Aeroelasticity of Joined-Wing Airplane Configurations: Past Work and Future Challenges-A Survey[R]. AIAA-2001-1370
[3] 郑诚行,肖小玲. 翼尖连接机翼布局弹性气动力探讨[J]. 空气动力学学报, 2005, 23(1): 93-96 Zheng Chengxing, Xiao Xiaoling. The Exploration of Elastic Aerodynamics for a Joined Wing Configuration[J]. Acta Aerodynamica Sinica, 2005, 23(1): 93-96 (in Chinese)
[4] 张波成,万志强,杨超. 连翼布局飞行器飞行载荷与颤振分析[J]. 工程力学, 2010, 27(8): 229-233 Zhang Bocheng, Wan Zhiqiang, Yangchao. Flight Loads and Flutter Analysis of the Joined Wing Aircraft[J]. Engineering Mechanics, 2010, 27(8): 229-233 (in Chinese)
[5] 安效民,徐敏,陈士橹. 多场耦合求解非线性气动弹性的研究综述[J]. 力学进展, 2009, 39(3): 284-298 An Xiaomin, Xu Min, Chen Shilu. An Overview of CFD/CSD Coupled Solution for Nonlinear Aeroelasticity[J]. Advances in Mechanics, 2009, 39(3): 284-298 (in Chinese)
[6] Tienne S, Pelletier D, Garon A. A Monolithic Formulation for Steady-State Fluid-Structure Interaction Problems[R]. AIAA-2004-2239
[7] Hurka J, Ballmann J. Elastic Panels in Transonic Flow[R]. AIAA-2001-2722
[8] Blom F J. Considerations on the Spring Analogy[J]. Int J Numer Meth Fluids, 2000, 32: 647-668
[9] Batan J D, Lhner R. Numerical Simulation of Pilot/Seat Ejection From an F-16[R]. AIAA-1993-0783