机翼折叠运动的瞬态动力学响应分析 -- 西北工业大学学报,2016,34(3):418-423
论文:2016,Vol:34,Issue(3):418-423
引用本文:
倪迎鸽, 侯赤, 万小朋, 赵美英. 机翼折叠运动的瞬态动力学响应分析[J]. 西北工业大学学报
Ni Yingge, Hou Chi, Wan Xiaopeng, Zhao Meiying. Transient Dynamic Response Analysis of a Wing in the Folding Motion[J]. Northwestern polytechnical university

机翼折叠运动的瞬态动力学响应分析
倪迎鸽, 侯赤, 万小朋, 赵美英
西北工业大学 航空学院, 陕西 西安 710072
摘要:
结合多体动力学中的浮动坐标系法和结构动力学中的模态综合法,建立了机翼折叠运动的动力学控制方程,预测了机翼折叠运动中的瞬态动力学特性。将有理函数近似导出的折叠运动中的非定常气动力引入到动力学控制方程中,获得了机翼折叠运动中在时变气动力作用下的瞬态动力学响应。结果表明:机翼折叠过程越缓慢,得到的瞬态响应越平稳;机翼柔性对折叠变形过程中的瞬态响应影响较大;在一定的来流速度范围内,来流速度越大,稳态时翼尖位移响应的振荡越小,越有助于机翼的折叠变形。
关键词:    折叠机翼    瞬态动力学响应    有理函数近似    浮动坐标系法    模态综合法   
Transient Dynamic Response Analysis of a Wing in the Folding Motion
Ni Yingge, Hou Chi, Wan Xiaopeng, Zhao Meiying
College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
A set of equations which govern the time evolutions of a wing in the folding motion are developed to predict the transient dynamic responses by integration the floating frame approach in multibody dynamics with component modal synthesis in structural dynamics. The developed equations are further integrated with unsteady aerodynamics in the folding motion which is obtained by rational function approximation to carry out the transient dynamic responses with time-varying aerodynamics. Results demonstrate that the transient responses are more stable in a slower folding motion. The flexible wing has a great effect on the responses. Within a certain flow velocity a greater velocity means a smaller oscillation of the tip displacement and contributes to the folding motion.
Key words:    folding wing    transient dynamic responses    rational function approximation    floating frame approach    component modal synthesis    unsteady aerodynamics    dynamics    time varying systems   
收稿日期: 2015-05-19     修回日期:
DOI:
通讯作者:     Email:
作者简介: 倪迎鸽(1987—),女,西北工业大学博士研究生,主要从事变体飞机一体化设计的研究。
相关功能
PDF(1782KB) Free
打印本文
把本文推荐给朋友
作者相关文章
倪迎鸽  在本刊中的所有文章
侯赤  在本刊中的所有文章
万小朋  在本刊中的所有文章
赵美英  在本刊中的所有文章

参考文献:
[1] Wilson J R. Morphing UAVs Change the Shape of Warfare[J]. Aerospace America,2004,42(2):28-29
[2] Scarlett John N, Canfield Robert A. Multibody Dynamic Aeroelastic Simulation of a Folding Wing Aircraft[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, Newport, Rhode Island, 2006
[3] Reich Gregory W, Bowman Jason C, Sanders Brian. Development of an Integrated Aeroelastic Multibody Morphing Simulation Tool[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, 2006,Newport, Rhode Island
[4] 王杰. 折叠翼飞行器气动弹性与动力学仿真[D]. 南京:南京航空航天大学,2010 Wang Jie. Aeroelasticity and Dynamics Analysis on a Folding Wing Morphing Aircraft[D]. Nanjing, Nanjjing University of Aeronuatics and Astronautics, 2010
[5] Evgeny Selitremmik, Moti Karpel. Computational Aeroelastic Simulation of Rapidly Morphing Air Vehicls[J]. Journal of Aircraft, 2012, 49(6): 1675-1686
[6] Zhao Youhui, Hu Haiyan. Prediction of Transient Responses of a Folding Wing during the Morphing Process[J]. Aerospace Science and Technology, 2013, 24(1): 89-94
[7] Baumgarte J W. Stabilization of Constraints and Integrals of Motion[J]. Computer Methods in Applied Mechanics and Engineering, 1972(1): 1-6
[8] Shabana A A. Dynamics of Multibody Systems[M]. Cambridge University Press, New York, 1998
[9] Craig R R, Bampton C C. Coupling of Substructures for Dynamic Analysis[J]. AIAA Journal, 1968, 6(7): 1313-1310