论文:2016,Vol:34,Issue(3):380-385
引用本文:
张庆超, 赵虎, 林辉, 范珩. 电磁波在氩气DBD等离子体中的衰减特性研究[J]. 西北工业大学学报
Zhang Qingchao, Zhao Hu, Lin Hui, Fan Heng. Study of the Attenuation of Electromagnetic Waves in Ar DBD Plasma[J]. Northwestern polytechnical university

电磁波在氩气DBD等离子体中的衰减特性研究
张庆超, 赵虎, 林辉, 范珩
西北工业大学 自动化学院, 陕西 西安 710072
摘要:
飞行器等离子体隐身技术的实现具有重要的战略意义和实用价值,同时封闭式等离子体能够克服开放环境中等离子体稳定性差、能耗大等问题。通过仿真与实验对比研究了中高气压下氩气DBD等离子体的特性,通过电流密度估算了等离子体的电子密度,并以此为基础,计算了电磁波在等离子体中的衰减幅度,探讨了等离子体对电磁波的反射作用以及等离子体的厚度对电磁波衰减的影响。研究结果表明:考虑反射时,随着等离子体厚度的增加,电磁波衰减最大值所对应的频率有明显增大,且厚度增加到一定程度后,衰减有趋于饱和的现象。
关键词:    隐身技术    DBD    等离子体    衰减    等离子体厚度   
Study of the Attenuation of Electromagnetic Waves in Ar DBD Plasma
Zhang Qingchao, Zhao Hu, Lin Hui, Fan Heng
Department of Automatic Control, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Realization of the plasma stealth technology for aircraft has important strategic significance and practical value, and the closed plasma can overcome the problems of poor stability and excessive energy consumption of plasma in open environment.This paper studies the characteristics of Argon DBD plasma by comparison of simulations and experiments. Based on estimating the electron density of the plasma by current density, the attenuation of electromagnetic wave in the plasma is calculated. Furthermore, the influences on the attenuation caused by the electromagnetic wave reflection and the plasma thickness are discussed.The results of this study show that: with taking the reflection into account, the frequency of the maximum attenuation of the electromagnetic wave increases with the increasing the plasma thickness, and the attenuation has a tendency of saturation with the plasma thickness increasing to a significant extent.
Key words:    stealth technology    DBD    plasmas    attenuation    plasma thickness   
收稿日期: 2016-02-01     修回日期:
DOI:
通讯作者:     Email:
作者简介: 张庆超(1990—),西北工业大学博士研究生,主要从事放电等离子体与飞行器隐身的研究。
相关功能
PDF(2112KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张庆超  在本刊中的所有文章
赵虎  在本刊中的所有文章
林辉  在本刊中的所有文章
范珩  在本刊中的所有文章

参考文献:
[1] Shibkov V M, Dvinin S A, Ershov A P, et al. Surface Microwave Discharges in Air[J]. Plasma Physics Reports, 2007, 33(1): 72-77
[2] Swarner W G, Peters L. Radar Cross Sections of Dielectric or Plasma Coated Conducting Spheres and Circular Cylinders[J]. IEEE Trans on Antennas and Propagation, 1963, 11(5): 558-569
[3] Rivers B P, Fiszer M, Gruszczynski J. Russia Working on Stealth Plasma[J]. Journal of Electron Defense, 2002, 25(6): 20
[4] 白希尧,张芝涛,杨波,等. 用于飞行器的强电离放电非平衡等离子体隐身方法研究[J]. 航空学报, 2004, 25(1): 51-54 Bai Xiyao, Zhang Zhitao, Yang Bo, et al. Study on the Method of Non-Equiblium Plasma Stealth by Using Strong Ionization Discharge[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(1): 51-54 (in Chinese)
[5] Wei X, Xu H, Li J, et al. Electromagnetic Wave Attenuation Measurements in a Ring-Shaped Inductively Coupled Air Plasma[J]. Journal of Applied Physics, 2015, 117: 203301
[6] Chaudhury B, Chaturvedi S. Three-Dimensional Computation of Reduction in Radar Cross Section Using Plasma Shielding[J]. IEEE Trans on Plasma Science, 2005, 33(6): 2027-2034
[7] Bai Bowen, Li Xiaoping, Xu Jin, et al. Reflections of Electromagnetic Waves Obliquely Incident on a Multilayer Stealth Structure with Plasma and Radar Absorbing Material[J]. IEEE Trans on Plasma Science, 2015, 43(8): 2588-2597
[8] Gregoire D J, Santoru J, Schumacher R W. Electromagnetic-Wave Propagation in Unmagnetized Plasmas[R]. Hydrological Research Letters, 1992
[9] 林敏, 徐浩军, 魏小龙, 等. 电磁波在非磁化等离子体中衰减效应的实验研究[J]. 物理学报, 2015, 64(5): 055201 Lin Min, Xu Haojun, Wei Xiaolong, et al. Experimental Investigation on Attenuation Effects of Electromagnetic Waves in an Unmagnetized Plasma[J]. Acta Physica Sinica, 2015, 64(5): 055201 (in Chinese)
[10] Lin M, Xu H, Wei X, et al. Numerical and Experimental Investigation on the Attenuation of Electromagnetic Waves in Unmagnetized Plasmas Using Inductively Coupled Plasma Actuator[J]. Plasma Science and Technology, 2015, 17(10): 847-852
[11] He X, Zhang Y, Chen J, et al. Experimental Investigation on Electromagnetic Attenuation by Low Pressure Radio-Frequency Plasma for Cavity Structure[J]. Plasma Science and Technology, 2016, 18(1): 62-66
[12] Wang Y N, Liu Y, Lin G Q. A Computational Study of Radio Frequency Atmospheric Pressure Discharge in Nitrogen and Oxygen Mixture Gases[J]. Chinese Physics Letters, 2013, 30(3): 035201
[13] Li B, Chen Q, Liu Z W, et al. A Large Gap of Atmospheric Pressure RF-DBD Glow Discharges in Ar and Mixed Gases[J]. Chinese Physics Letters, 2011, 28(1): 015201
[14] Jõgi I, Raud J, Hein K, Laan M. Spectral Characterization of Medium-Pressure RF Discharge in Argon-Oxygen Mixture[J]. Journal of Physics D: Applied Physics, 2014, 47(33): 335206
[15] 赵虎,李兴文,贾申利. SF6及其混合气体临界击穿场强计算与特性分析[J]. 西安交通大学学报, 2013, 47(2): 109-115 Zhao Hu, Li Xingwen, Jia Shenli. Calculation and Characteristic Analysis of Critical Breakdown Field Strength of SF6 and the Mixtures[J]. Journal of Xi'an Jiaotong University, 2013, 47(2): 109-115 (in Chinese)
[16] Vidmar R J. On the Use of Atmospheric Pressure Plasmas as Electromagnetic Reflectors and Absorbers[J]. IEEE Trans on Plasma Science, 1990, 18(4): 733-741
[17] He X, Zhang Y, Chen J, et al. Numerical Calculation on Electromagnetic Wave Reflection by Plasma-Covered Structures[C]//2012 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), 2012: 799-801