论文:2016,Vol:34,Issue(1):132-138
引用本文:
张宏基, 唐虹, 史耀耀. 纤维丝束带成型工艺参数对弹性性能影响的有限元分析[J]. 西北工业大学学报
Zhang Hongji, Tang Hong, Shi Yaoyao. Finite Element Analysis Forming Process Parameters Influences on Elastic Properties of Fiber Reinforce Prepreg[J]. Northwestern polytechnical university

纤维丝束带成型工艺参数对弹性性能影响的有限元分析
张宏基1,2, 唐虹1, 史耀耀1
1. 西北工业大学 机电学院, 陕西 西安 710072;
2. 榆林学院 能源工程学院, 陕西 榆林 719000
摘要:
根据复合材料纤维丝束带材料的细观结构,通过推导工艺张力和温度参数作用下纤维丝束带弹性变形理论。利用有限元分析软件建立参数化的细观有限元模型,通过施加合理的载荷及边界条件,对张力及温度作用下纤维丝束带弹性性能参数的变化进行研究。在讨论张力与纤维体积含量关系的基础上,详细分析了张力、温度及纤维体积含量对纤维丝束带弹性性能参数的影响规律。结果表明:随着张力在0~50 N范围内的增大,纤维丝束带弹性模量和剪切模量均呈现先近似线性增大而后保持平稳最后下降的规律。其中,剪切模量下降的趋势更为缓慢;随着温度的升高纤维丝束带的纵向弹性模量表现出先逐渐减小而后趋于稳定的变化规律并且纤维体积含量越高,这种变化趋势越缓慢;横向弹性模量则表现出现先增加后降低的变化规律。而随着温度的升高横向纵向剪切模量均逐渐降低。
关键词:    复合材料    弹性性能    纤维丝束带    工艺参数   
Finite Element Analysis Forming Process Parameters Influences on Elastic Properties of Fiber Reinforce Prepreg
Zhang Hongji1,2, Tang Hong1, Shi Yaoyao1
1. Department of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. College of Energy Engineering, Yulin University, Yulin 719000, China
Abstract:
Based on the micro-structure of fiber reinforce prepreg composites, elastic deformation theory of fiber reinforce prepreg was derivation under the action of process tension and temperature parameters. Using finite element analysis software established the parameterization finite element model. By applying reasonable load and boundary condition, to study the changes of the elastic properties parameters of the fiber reinforce prepreg under the action of tension and temperature. On the basis of discuss the relationship between tension and fiber volume content, detailed analysis the influence of the tension, temperature and fiber volume content on elastic properties of fiber reinforce prepreg. The results show that: with the increase of tension in range of 0~50 N, elastic modulus and shear modulus are presented as approximate linear increase and then remained stable last decreased, and the shear modulus is trend slower. With the temperature increasing, longitudinal modulus of fiber reinforce prepreg showed gradually decreased and then tends to be steady, and the higher the fiber volume content, the change trend slower. The transverse modulus of show firstly increases and then decreases. The shear modulus decreases with the increase of temperature.
Key words:    composites    elastic property    fiber reinforced prepreg    process parameters   
收稿日期: 2015-09-12     修回日期:
DOI:
基金项目: 国家自然科学基金面上项目(51475377、51375394)资助
通讯作者:     Email:
作者简介: 张宏基(1983-),西北工业大学博士研究生,主要从事复合材料缠绕铺放成型工艺及装备控制技术研究。
相关功能
PDF(1628KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张宏基  在本刊中的所有文章
唐虹  在本刊中的所有文章
史耀耀  在本刊中的所有文章

参考文献:
[1] Kazem Fayazbakhsh, Mahdi Arian Nik, Damiano Pasini, et al. Defect Layer Method to Capture Effect of Gaps and Overlaps in Variable Stiffness Laminates Made by Automated Fiber Placement [J]. Composite Structures, 2013, 97: 245-251
[2] Mouritz A P, Feih S, Mathys Z, et al. Mechanical Property Degradation of Naval Composite Materials [J]. Fire Technology, 2011, 47(4): 913-939
[3] Nguyen Tiencuong, Zhao Xiaoling, Riadh Al-Mahaidi. Effects of Ultraviolet Radiation and Associated Elevated Temperature[J]. Composite Structures, 2012, 94: 3563-3573
[4] Mahmood Ansar, Wang Xinwei, Zhou Chuwei. Elastic Analysis of 3D Woven Orthogonal Composites[J]. Grey Systems: Theory and Application, 2011, 1(3): 228-239
[5] Xiao Hao, Lu Yonggen, Zhao Weizhe, et al. The Effect of Heat Treatment Temperature and Time on the Microstructure and Mechanical Properties of PAN-Based Carbon Fibers[J]. Journal of Materials Science, 2014 49: 794-804
[6] 卢子兴, 王成禹, 夏彪. 三维全五向编织复合材料弹性性能及热物理性能的有限元分析[J]. 复合材料学报, 2013, 30(3): 160-167 Lu Zixing, Wang Chengyu, Xia Biao. Finite Element Analysis of Elastic Property and Thermo-Physical Properties of Three-Dimensional and Fullfive-Directional Braided Composites[J]. Acta Materiae Composite Sinica, 2013, 30(3): 160-167 (in Chinese)
[7] Yuan M N, Yang Y Q, Xia Z H. Modeling of Push-out Test for Interfacial Fracture Toughness of Fiber-Reinforced Composites[J]. Advanced Composite Materials, 2012, 21(5/6): 401-412
[8] Rodrígez M, Molina-Aluía J M, González C, et al. A Methodology to Measure the Interface Shear Strength by Means of the Fiber Push-in Test[J]. Composites Science and Technology, 2012, 72: 1924-1932
[9] Ghasemi Nejhad M N, Cope R D. Thermal Analysis of In-Situ Thermoplastic Composite Tape Laying[J]. Journal of Thermoplastic Composites Materials, 1991, 4:20-45
[10] Haktan Karadeniz Z, Dilek Kumlutas. A Numerical Study on the Coefficients of Thermal Expansion of Fiber Reinforce Composite Materials[J]. Composite Structures, 2007, 78(5): 1-10
[11] Rao M V, Mahjan P, Mittal R K. Effect of Architecture on Mechanical Properties of C/C Composites[J]. Composite Structures, 2008, 83(2): 131-142
[12] Ruiz E, Trochu F. Thermo Mechanical Properties during Cure of Glass-Polyester RTM Composites: Elastic and Viscoelastic Modeling [J]. Journal of Composite Materials, 2005, 39(10): 881-916