考虑弹流润滑效应的高速角接触球轴承刚度特性研究 -- 西北工业大学学报,2016,34(1):125-131
论文:2016,Vol:34,Issue(1):125-131
引用本文:
余永健, 陈国定, 李济顺. 考虑弹流润滑效应的高速角接触球轴承刚度特性研究[J]. 西北工业大学学报
Yu Yongjian, Chen Guoding, Li Jishun. Research on Stiffness Characteristics of High Speed Angular-Contact Ball Bearing Considering Elastohydrodynamic Lubrication Effect[J]. Northwestern polytechnical university

考虑弹流润滑效应的高速角接触球轴承刚度特性研究
余永健1, 陈国定1, 李济顺2
1. 西北工业大学 机电学院, 陕西 西安 710072;
2. 河南省机械设计及传动系统重点实验室, 河南 洛阳 471003
摘要:
高速角接触球轴承的刚度特性对航空发动机转子系统的动态特性有着重要影响。为获得油润滑条件下角接触球轴承刚度特性,需要考虑弹流润滑效应对轴承刚度的影响。基于Jones拟静力学模型,建立了考虑弹流润滑影响的耦合滚动体/套圈接触刚度和油膜刚度的滚动轴承刚度计算模型。应用滚动轴承刚度计算模型分析了弹流润滑效应对角接触球轴承刚度的影响规律。研究结果表明:与不考虑弹流润滑效应的情况相比,考虑弹流润滑效应的角接触球轴承刚度有较明显的降低;较之轴承轴向刚度,轴承径向刚度对弹流润滑效应更为敏感;在考虑弹流润滑效应的情况下,润滑油动力黏度和黏压系数的增大均使得轴承刚度减小,黏温系数的增大仅使得轴承径向刚度增大,但对轴向刚度几乎没有影响;随着转子转速的升高,弹流润滑效应对轴承径向刚度的影响愈加明显,但对轴向刚度的影响逐渐弱化;随着轴向载荷的增加,弹流润滑效应对轴承刚度的影响缓慢增大;随着径向载荷的增加,弹流润滑效应对轴向刚度的影响缓慢减小,而对径向刚度的影响则几乎保持不变。
关键词:    高速球轴承    弹流润滑效应    接触刚度    油膜刚度    轴承刚度   
Research on Stiffness Characteristics of High Speed Angular-Contact Ball Bearing Considering Elastohydrodynamic Lubrication Effect
Yu Yongjian1, Chen Guoding1, Li Jishun2
1. Department of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. Henan Key Laboratory of Modern Mechanical Design and Transmission System, Luoyang 471003, China
Abstract:
The stiffness characteristics of high-speed angular contact ball bearing have important influence on the dynamic characteristics of an aero-engine's rotor system. To obtain them under oil lubrication condition, the elastohydrodynamic lubrication (EHL) effect on the stiffness characteristics of the ball bearing needs to be considered. Based on Jones pseudo-static mechanical model, a ball bearing stiffness calculation model is established by coupling the contact stiffness between ball and ring and its oil film stiffness, taking into consideration the EHL effect. The ball bearing stiffness calculation model is used to study the influence of EHL effect on the ball bearing stiffness. The exploration results show that the ball bearing stiffness with the EHL effect considered is obviously lower than the ball bearing's stiffness without considering the EHL effect. The ball bearing's radial stiffness is more sensitive to the EHL effect than the ball bearing's axial stiffness. With the EHL effect considered, the ball bearing stiffness decreases with increasing dynamic viscosity coefficient and pressure viscosity coefficient respectively. The ball bearing's radial stiffness increases with its temperature viscosity coefficient, but temperature viscosity coefficient has no effect on its axial stiffness. The influence of the EHL effect on the ball bearing's axial stiffness becomes more obvious when the rotor speed increases, but its influence on the ball bearing's radial stiffness is waning. Its influence on the ball bearing stiffness does not change with the load variation.
Key words:    ball bearings    calculations    elastic deformation    elastohydrodynamic lubrication    film thickness    geometry    liquid films    pressure    stiffness    temperature    viscosity    bearing stiffness    contact stiffness    elastohydrodynamic lubrication effect    high-speed ball bearing    oil film stiffness   
收稿日期: 2015-09-10     修回日期:
DOI:
基金项目: 国家自然科学基金(51375148)资助
通讯作者:     Email:
作者简介: 余永健(1979-),西北工业大学博士研究生,主要从事滚动轴承性能分析及理论研究。
相关功能
PDF(1221KB) Free
打印本文
把本文推荐给朋友
作者相关文章
余永健  在本刊中的所有文章
陈国定  在本刊中的所有文章
李济顺  在本刊中的所有文章

参考文献:
[1] Kim S M, Lee K J, Lee S K. Effect of Bearing Support Structure on the High-Speed Spindle Bearing Compliance[J]. International Journal of Machine Tools and Manufacture, 2002,42(3):365-373
[2] Jones A B. The Mathematical Theory of Rolling Elements Bearings[M]. Mechanical Design and Systems Handbook. New York, Mc Graw-Hill, 1966
[3] Jones A B, McGron J M. Rotor-Bearing Dynamics Technology Design Guide. Part2: Ball Bearing[R]. OH: Wright Patterson Air Force Aero Propulsion Lab, AFAPLTR-78-6: 1-62
[4] Jones A B. A General Theory for Elastically Constrained Ball and Radial Roller Bearing[J]. Trans ASME J Basic Eng,1960, 82: 309-320
[5] 王硕桂,夏源明. 过盈配合量和预紧力对高速角接触球轴承刚度的影响[J]. 中国科学技术大学学报, 2006,36(12): 1314-1320 Wang Shuogui, Xia Yuanming. Effect of the Interference Fit and Axial Preload in the Stiffness of the High-Speed Angular Contact Ball Bearing[J]. Journal of University of Science and Technology of China, 2006, 36(12): 1314-1320 (in Chinese)
[6] 王保民,梅雪松,胡赤兵,等. 内圈离心位移对高速角接触球轴承刚度的影响[J]. 计算力学学报,2010,27(1): 145-150 Wang Baomin, Mei Xueshong, Hu Chibing, et al. Influence of Inner Ring Centrifugal Displacement on the Stiffness of High-Speed Angular Contact Ball Bearing[J]. Chinese Jouranl of Computational Mechanics, 2010,27(1): 145-150 (in Chinese)
[7] 曹宏瑞,李兵,陈雪峰,等. 高速主轴离心膨胀及对轴承动态特性的影响[J]. 机械工程学报,2012,48(19): 59-64 Cao Hongrui, Li Bing, Chen Xuefeng, et al. Centrifugal Expansion of High-Speed Spindle and Its Influences on Bearing Dynamic Characteristics[J]. Journal of Mechanical Engineering, 2012,48(19): 59-64 (in Chinese)
[8] 田久良,洪军,朱永生,等. 机床主轴-轴承系统热-力耦合模型及其动态性能研究[J]. 西安交通大学学报,2012, 46(7): 63-68 Tian Jiuliang, Hong Jun, Zhu Yongsheng, et al. Thermo-Mechanical Coupling Model and Dynamical Characteristics of Machining Spindle-Bearing System[J]. Journal of Xi'an Jiaotong University, 2012, 46(7): 63-68 (in Chinese)
[9] 方兵,张雷,曲兴田,等. 角接触球轴承刚度理论计算与实验[J]. 吉林大学学报:工学版, 2012, 46(7):63-68 Fang Bing, Zhang Lei, Qu Xingtian, et al. Theoretical and Experimental Research of Stiffness of Angular Contact Ball Bearing[J]. Journal of Jiling University: Engineering and Technology Edition, 2012, 46(7): 63-68 (in Chinese)
[10] 袁幸,朱永生,洪军,等. 精密球轴承不可重复跳动影响主轴动特性的预测[J]. 吉林大学学报:工学版,2012, 42(2): 382-387 Yuan Xing, Zhu Yongsheng, Hong Jun, et al. Prediciton Model of Spindle Dynamic Characteristics Affected by Non-Repetitive Run-Out of Precision Ball Bearing and Its Application[J]. Journal of Jiling University: Engineering and Technology Edition, 2012, 42(2): 382-387 (in Chinese)
[11] 黄浩,张鹏顺. 航空发动机角接触球轴承刚度的一种实用分析方法[J]. 南京航空航天大学学报,2000,32(4): 422-427 Huang Hao, Zhang Pengshun. An Analytical Method of Stiffness for Angular Contact Ball Bearing of Aeroengine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2000, 32(4): 422-427 (in Chinese)
[12] Yuan Kang, Huang Chihching. Stiffness Determination of Angular-Contact Ball Bearings by Using Neural Network[J]. Tribology International, 2006, 39: 461-469
[13] David Noel. Complete Analytical Expression of the Stiffness Matrix of Angular Contact Ball Bearings[J]. Journal of Tribology, 2013, 135(10):1-8
[14] Cao Yuzhong, Yusuf Altintas. A General Method for the Modeling of Spindle Bearing Systems[J]. Journal of Mechanical Design, 2004, 126: 1089-1104
[15] Guo Y, Parker R G. Stiffness Matrix Calculation of Rolling Element Bearings Using a Finite Element/Contact Mechanics Model[J]. Mechanism and Machine Theory, 2012, 51:32-45
[16] Hagiu G D, Gafitanu M D. Dynamic Characteristics of High Speed Angular Contact Ball Bearings[J]. Wear, 1997, 211(1): 22-29
[17] 哈姆罗克 B J, 道森 D. 滚动轴承润滑[M]. 北京:机械工业出版社,1988 Hamrock Bernard J, Dowson D. Rolling Bearing lubrication[M]. Beijing, China Machine Press, 1988 (in Chinese)
[18] Gupta P K, Cheng H S, Forster N H. Viscoelastic Effects in MIL-L-7808-Type Lubrication PartⅠ: Analytical Formulation[J]. Tribology Transactions, 1992, 35(2): 269-274
[19] Hamrock B J, Dowson D. Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part Ⅲ Theoretical Formulation[J]. ASME Journal of Lubrication Technology, 1977, 98(2): 264-272
[20] Harris T A. 滚动轴承分析[M]. 北京:机械工业出版社,1997 Harris T A. Rolling Bearing Analysis[M]. Beijing, China Machine Press, 1977 (in Chinese)