飞机机动划分的数据挖掘方法 -- 西北工业大学学报,2016,34(1):33-40
论文:2016,Vol:34,Issue(1):33-40
引用本文:
张夏阳, 殷之平, 刘飞, 黄其青. 飞机机动划分的数据挖掘方法[J]. 西北工业大学学报
Zhang Xiayang, Yin Zhiping, Liu Fei, Huang Qiqing. An Aircraft Maneuver Partition Method Based on Data Mining[J]. Northwestern polytechnical university

飞机机动划分的数据挖掘方法
张夏阳, 殷之平, 刘飞, 黄其青
西北工业大学 航空学院, 陕西 西安 710072
摘要:
飞机机动划分是将飞行数据分解成若干具有明确物理意义的机动动作子序列的重要前处理方法,也是健康监控、飞行模拟、飞行品质评估等研究工作的必要步骤。结合数据挖掘技术提出一种自动的飞机机动划分方法,该方法根据法向过载数据的趋势提取出飞行数据中的机动片段,并用ISODATA聚类将机动片段归并为若干分类,可以证明每个分类代表一种机动动作。将该方法分别应用于小规模飞行数据与大规模飞行数据中能够识别并正确划分至少89%的机动动作,证明该方法有效且满足工程精度要求。
关键词:    机动划分    数据挖掘    趋势识别    ISODATA聚类   
An Aircraft Maneuver Partition Method Based on Data Mining
Zhang Xiayang, Yin Zhiping, Liu Fei, Huang Qiqing
College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
An aircraft maneuver partition method is to divide flight data into several maneuver action sub-sequences that are meaningful in physics, being essential for health monitoring, flight simulation and flight quality evaluation. Based on data mining, we propose an automatic maneuver partition method, which extracts the maneuver segments of flight data according to the trend of normal overload data and then uses the iterative self-organized data analysis algorithm (ISODATA) to cluster the maneuver segments into some classes. We prove that each class represents a maneuver action. The maneuver partition method is applied to small scale flight data and large scale flight data respectively and can recognize and correctly partition at least 89% of maneuver actions, indicating that the method is effective and satisfies the requirements for engineering accuracy.
Key words:    aircraft    algorithms    cluster analysis    data fusion    data mining    eigenvalues and eigenfunctions    genetic algorithms    least squares approximation    linear regression    signal to noise ratio    time series    ISODATA clustering    maneuver partition    non-supervised learning    trend recognition   
收稿日期: 2015-03-17     修回日期:
DOI:
通讯作者:     Email:
作者简介: 张夏阳(1991-),西北工业大学硕士研究生,主要从事飞行结构健康监控及系统建模研究。
相关功能
PDF(1205KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张夏阳  在本刊中的所有文章
殷之平  在本刊中的所有文章
刘飞  在本刊中的所有文章
黄其青  在本刊中的所有文章

参考文献:
[1] Eric Bechhoefer. The Best Regime Recognition Algorithm for HUMS[C]//American Helicopter Society Specialist's Meeting on Condition Based Maintenance, 2008
[2] Oza N C, Tumer K, Tumer I Y, et al. Classification of Aircraft Maneuvers for Fault Detection[M]. Multiple Classifier Systems Springer Berlin Heidelberg, 2003: 375-384
[3] 倪世宏, 史忠科, 谢川,等. 军用战机机动飞行动作识别知识库的建立[J]. 计算机仿真, 2005, 22(4):23-26 Ni Shihong, Shi Zhongke, Xie Chuan, et al. Establishment of Avion Inflight Maneuver Action Recognizing Knowledge Base[J]. Computer Simulation, 2005, 22(4): 23-26 (in Chinese)
[4] Barndt G, Sarkar S, Miller C. Maneuver Regime Recognition Development and Verification for H-60 Structural Monitoring[C]//Annual Forum Proceedings-American Helicopter Society, American Helicopter Society, INC, 2007, 63(1): 317
[5] Suresh M, Nam P, David C. Maneuver Recognition Verification & Validation Using Visualization[C]//AIAC-14 Fourteenth Australian International Aerospace Congress APISAT 2011, Melbourne, Australian
[6] 谢川, 倪世宏, 张宗麟,等. 基于状态匹配与支持向量机的飞行动作识别方法[J]. 弹箭与制导学报, 2004, 24(2):240-245 Xie Chuan, Ni Shihong, Zhang Zonglin, et al. Recognition Method of Acrobatic Maneuver Based on State Matching and Support Vector Machines[J]. Journal of Projectiles; Rockets; Missiles and Guidance, 2004, 24(2):240-245 (in Chinese)
[7] 杨俊, 谢寿生. 基于模糊支持向量机的飞机飞行动作识别[J]. 航空学报, 2005, 26(6):738-742 Yang Jun, Xie Shousheng. Fuzzy Support Vector Machines Based Recognition for AeroplaneFlight Action[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 738-742 (in Chinese)
[8] Kim D, Pechaud L. Improved Methodology for the Prediction of the Empennage Maneuver In-Flight Loads of a General Aviation Aircraft Using Neural Networks[R]. Embry-Riddle Aeronautical Univ, Daytona Beach Fl, 2001
[9] 李玉峰, 倪世宏. 一种基于模糊Kohonen网络的飞行数据智能处理方法[J]. 系统工程与电子技术, 2002, 24(9): 53-55 Li Yufeng, Ni Shihong. An Intelligent Approach to Flight Data Processing Based on a Fuzzy Kohonen Neural Network[J]. Systems Engineering and Electronics, 2002, 24(9): 53-55 (in Chinese)
[10] 苏晨, 倪世宏, 王彦鸿. 一种改进人工免疫的飞行状态规则提取方法[J]. 计算机工程与应用, 2011, 47(3): 237-239 Su Cheng, Ni Shihong, Wang Yanhong. Method of Rule Acquirement of Flight State Based on Improved AIS[J]. Computer Engineering and Applications, 2011, 47(3): 237-239 (in Chinese)
[11] 高原, 倪世宏, 王彦鸿, 等. 一种基于改进量子遗传算法的飞行状态规则提取方法[J]. 电光与控制, 2011, 18(1): 28-31 Gao Yuan, Ni Shihong, Wang Yanhong, et al. A Method for Flight State Rule Acquisition Based on Improved Quantum Genetic Algorithm[J]. Electronics Optics & Control, 2011, 18(1): 28-31 (in Chinese)
[13] 高东, 马昕, 许欣,等. 基于滑动窗口的定性趋势分析方法及应用[J]. 计算机应用研究, 2014, 31(5): 1441-1444 Gao Dong, Ma Xin, Xu Xin, et al. Method and Application of Qualitative Trend Analysis with Sliding Window[J]. Application Research of Computers, 2014, 31(5): 1441-1444 (in Chinese)
[14] 齐敏, 李大健, 郝重阳. 模式识别导论[M]. 北京: 清华大学出版社, 2009: 27-35 Qi Min, Li Dajian, Hao Chongyang. An Introduction to Pattern Recognition[M]. Beijing, Tsinghua University Press, 2009: 27-35 (in Chinese)
[15] 杨燕, 靳蕃, Mohamed K. 聚类有效性评价综述[J]. 计算机应用研究, 2008, 25(6): 1630-1632 Yang Yan, Jin Fan, Mohamed K. Survey of Clustering Validity Evaluation[J]. Application Research of Computers, 2008, 25(6): 1630-1632 (in Chinese)