基于多尺度局部自相似性和邻域嵌入的超分辨率算法研究 -- 西北工业大学学报,2015,33(6):1014-1019
论文:2015,Vol:33,Issue(6):1014-1019
引用本文:
潘璐璐, 延伟东, 郑红婵. 基于多尺度局部自相似性和邻域嵌入的超分辨率算法研究[J]. 西北工业大学学报
Pan Lulu, Yan Weidong, Zheng Hongchan. Super Resolution Based on Multi-Scale Local Self-Similarity and Neighbor Embedding[J]. Northwestern polytechnical university

基于多尺度局部自相似性和邻域嵌入的超分辨率算法研究
潘璐璐, 延伟东, 郑红婵
西北工业大学 理学院 应用数学系, 陕西 西安 710129
摘要:
多尺度局部自相似性是指同一幅图像中存在相同尺度或不同尺度的相似子块,这种图像局部结构自相似性广泛存在于自然图像中。提出了一种基于多尺度局部自相似性结合邻域嵌入的单幅图像超分辨率算法,该算法不依赖于外界图像,仅仅在原始图像的局部子窗口中搜索目标图像块的相似子块,并结合邻域嵌入算法,进一步提高参与重建的图像块与目标图像块的相似性程度。实验结果表明,与双三次插值与传统邻域嵌入算法相比,新算法在保证算法效率的前提下,能有效提升超分辨图像的重建质量。
关键词:    数据库系统    效率    嵌入式软件    误差    实验    滤波器    图像重构    数学运算符    MATLAB    光学分解功率    像素    局部自相似性    多尺度    邻域嵌入    超分辨率   
Super Resolution Based on Multi-Scale Local Self-Similarity and Neighbor Embedding
Pan Lulu, Yan Weidong, Zheng Hongchan
Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
Multi-scale local self-similarity, which widely occurs in natural images, refers to those similar patches either within the same scale or across different scales coming from the same input image. In this paper, we propose a single image super resolution algorithm based on multi-scale local self-similarity and neighbor embedding; this algorithm does not rely on an external example database nor use the whole input image as a source for example patches. Instead, we extract patches from extremely localized regions in the input image and combine with neighbor embedding algorithm, further increasing the similarity between the patches which take part in reconstruction on the one hand, and the target patch on the other. Experimental results and their analysis demonstrate preliminarily that our method can improve the quality of super resolution image as compared with the bicubic interpolation and traditional neighbor embedding algorithm, thus ensuring the efficiency of the algorithm.
Key words:    database systems    efficiency    embedded software    errors    experiments    filters    image reconstruction    mathematical operators    MATLAB    optical resolving power    pixels    local self-similarity    multi-scale    neighbor embedding    super resolution   
收稿日期: 2015-04-28     修回日期:
DOI:
基金项目: 国家自然科学基金(61201323)与陕西省自然科学基金(2014JQ5189)资助
通讯作者:     Email:
作者简介: 潘璐璐(1981—),女,西北工业大学讲师,主要从事图像超分辨率研究。
相关功能
PDF(3339KB) Free
打印本文
把本文推荐给朋友
作者相关文章
潘璐璐  在本刊中的所有文章
延伟东  在本刊中的所有文章
郑红婵  在本刊中的所有文章

参考文献:
[1] Su D, Willis P. Image Interpolation by Pixel-Level Data-Dependent Triangulation[J]. Comput Graph Forum, 2004, 23(2): 189-202
[2] Lin Z C, Shum H Y. Fundamental Limits of Reconstruction-Based Superresolution Algorithms under Local Reanslation[J]. IEEE Trans on PAMI, 2004, 26(1): 83-97
[3] Ben-Ezra M, Lin Z C, Wilbum B Penrose. Pixels: Super-Resolution in the Detector Layout Domain[C]//International Conference on Computer Vision, 2007: 1-8
[4] Chang H, Yeung D Y, Xiong Y. Super-Resolution through Neighbor Embedding[C]//Conference on Computer Vision and Pattern Recognition, 2004: 275-282
[5] Yang J, Wright J, Ma Y, et al. Image Super-Resolution as Sparse Representation of Raw Image Patches[C]//Conference on Computer Vision and Pattern Recognition, 2008: 1-8
[6] Freeman W T. Jones T R, Pasztor E C. Example-Based Super-Resolution[J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65
[7] Tang Y, Yuan Y, Yan P, et al. Greedy Regression in Sparse Coding Space for Single-Image Super-Resolution[J]. Journal of Visual Communication and Image Representation, 2013, 24(2): 148-159
[8] Kim K, Kwon Y. Example-Based Learning for Single-Image Super-Resolution[J]. Pattern Recognition, Lecture Notes in Computer Science, 2008, 5096: 456-465
[9] Glasner D, Bagon S, Irani M. Super-Resolution from a Single Image[C]//International Conference on Computer Vision, 2009: 349-356
[10] Freedman G, Fattal R. Image and Video Upscaling from Local Self-Examples[J]. ACM Transa on Graphics, 2011, 30(2): 60-65
[11] Li J, Qu Y, Li C, et al. Learning Local Gaussian Process Regression for Image Super-Resolution[J]. Neurocomputing, 2015, 154: 284-295
[12] Sun J, Zheng N, Tao H, et al. Shum. Image Hallucination with Primal Sketch Priors[C]//Proc IEEE Conference on Computer Vision and Patter Recognition, 2003: 729-736
[13] Wang Q, Tang X, Shum H. Patch Based Blind Image Super Resolution[C]//Proc IEEE International Conference on Computer Vision, 2005: 709-716
相关文献:
1.罗立涛, 杨涓, 金逸舟, 冯冰冰, 汤明杰.ECR中和器束流引出实验研究[J]. 西北工业大学学报, 2015,33(3): 395-400
2.范旭慧, 张捷, 马化斌.一类新型的光滑支持向量分类机[J]. 西北工业大学学报, 2015,33(3): 467-471
3.王峰, 程咏梅, 李松, 牟宏磊, 李路东.基于多特征的遥感图像融合算法[J]. 西北工业大学学报, 2015,33(3): 489-494
4.韩青, 孙树栋, 智睿瑞.基于纯角度观测信息的leader-followers机器人编队控制方法[J]. 西北工业大学学报, 2015,33(2): 244-250
5.刘岩, 樊晓桠.基于飞行模拟机视景的卫星遥感数据图像处理关键技术探讨[J]. 西北工业大学学报, 2015,33(6): 1027-1034
6.张维, 李文涛, 王力.基于接收信号强度的不同移动终端定位方法研究[J]. 西北工业大学学报, 2014,32(3): 481-485
7.郭辉, 赵宁, 侯圣文.基于碟形砂轮的面齿轮磨齿加工误差分析及实验研究[J]. 西北工业大学学报, 2013,31(6): 915-920
8.秦川, 赵建林, 姜碧强, 姜亚军, 黄钊.用于FBG解调的光纤F-P可调滤波器温漂抑制[J]. 西北工业大学学报, 2013,31(4): 664-667
9.黄汉桥, 黄长强, 赵辉, 曹林平, 翁兴伟.考虑前馈作用的BTT导弹自动驾驶仪设计方法研究[J]. 西北工业大学学报, 2012,30(3): 307-313
10.王静, 黄建国, 张群飞, 韩晶.噪声空间谱预白化小孔径阵列被动目标检测方法[J]. 西北工业大学学报, 2012,30(3): 422-427