基于视频的驾驶疲劳检测技术的研究 -- 西北工业大学学报,2015,33(6):1001-1006
论文:2015,Vol:33,Issue(6):1001-1006
引用本文:
邓正宏, 黄一杰, 李翔, 张天凡. 基于视频的驾驶疲劳检测技术的研究[J]. 西北工业大学学报
Deng Zhenghong, Huang Yijie, Li Xiang, Zhang Tianfan. Researching Driver Fatigue Detection Using Video Technology[J]. Northwestern polytechnical university

基于视频的驾驶疲劳检测技术的研究
邓正宏1, 黄一杰1, 李翔2, 张天凡1
1. 西北工业大学 自动化学院, 陕西 西安 710072;
2. 西安特种设备检验检测院, 陕西 西安 710068
摘要:
疲劳驾驶已经成为交通事故的重要因素,若能及时监测驾驶员疲劳程度并且对其进行警告,则可降低此类交通事故的发生率。在图像处理的基础上从驾驶员实际状况出发,从背景中分离驾驶员面部区域,分别采用优化等照度线法和优化mouthmap法提取眼睛和嘴巴特征参数,先在模糊神经网络的基础上建立疲劳分类器识别驾驶员疲劳程度,再在DSP系统上去实现疲劳驾驶检测系统。实验结果表明,该系统满足了一般疲劳的动态识别要求,具有较强的实用性。
关键词:    疲劳驾驶    面部特征    面部识别    眼睛监测   
Researching Driver Fatigue Detection Using Video Technology
Deng Zhenghong1, Huang Yijie1, Li Xiang2, Zhang Tianfan1
1. Department of Automatic Control, Northwestern Polytechnical University, Xi'an 710072, China;
2. Xi'an Special Equipment Inspection Institute, Xi'an 710068, China
Abstract:
Fatigue driving has become an important factor in traffic accidents; warning through timely monitoring of driver fatigue may reduce the incidence of traffic accidents. Using the image processing and the driver's actual situation, we separate driver's face in the background region, use optimized equal illumination method and optimized mouthmap method respectively to extract characteristic parameters of the eyes and the mouth, firstly establish fatigue classifier to identify driver fatigue based on fuzzy neural network classifier, and then implement the driver fatigue detection system in DSP system. Experimental results and their analysis show preliminarily that the system with strong practicability can meet the requirements of dynamic recognition of general fatigue.
Key words:    accident prevention    automobile drivers    calculations    CCD cameras    conformal mapping    covariance matrix    digital signal processors    experiments    feature extraction    functions    fuzzy neural networks    image processing    membership functions    monitoring    neural networks    optimization    pixels    safety engineering    eyes monitoring    facial features    facial recognition    fatigue driving   
收稿日期: 2015-03-15     修回日期:
DOI:
基金项目: 国家自然科学基金(F011102)资助
通讯作者:     Email:
作者简介: 邓正宏(1975—),西北工业大学教授,主要从事飞行器自主运行、系统工程及图像智能分析等研究。
相关功能
PDF(1747KB) Free
打印本文
把本文推荐给朋友
作者相关文章
邓正宏  在本刊中的所有文章
黄一杰  在本刊中的所有文章
李翔  在本刊中的所有文章
张天凡  在本刊中的所有文章

参考文献:
[1] 王正国. 全球道路安全现状[J]. 中华创伤杂志, 2010(5): 385-387 Wang Zhengguo. Global Road Safety Situation[J]. Chinese Journal of Traumatology, 2010(5): 385-387 (in Chinese)
[2] Grace R, Byrne V E, Legrand J M, et al. A Machine Vision Based Drowsy Driver Detection System for Heavy Vehicles[C]//Proceedings of The Ocular Measures of Driver Alertness Conference, 1999
[3] 邸巍. 基于视觉的全天候驾驶员疲劳与精神分散状态检测方法研究[D]. 长春:吉林大学, 2010 Wei Di. Study on All-Day Monitoring Driver Fatigue and Distraction State Based on Visual[D]. Changchun, Jilin University, 2010 (in Chinese)
[4] Miao J, Yin B, Wang K, et al. A Hierarchical Multiscale and Multiangle System for Human Face Detection in a Complex Background Using Gravity-Center Template[J]. Pattern Recognition, 1999, 32(7): 1237-1248
[5] Yang G, Huang T S. Human Face Detection in a Complex Background[J]. Pattern Recognition, 1994, 27(1):53-63
[6] 梁路宏,艾海舟,何克忠,等. 基于多关联模板匹配的人脸检测[J]. 软件学报,2001,12(1): 94-102 Liang Luhong, Ai Haizhou, He Kezhong, et al. Face Detection Based on the Matching of Multiple Related Templates[J]. Journal of Software, 2001, 12(1): 94-102 (in Chinese)
[7] 卢春雨,张长水. 基于区域特征的快速人脸检测法[J]. 清华大学学报, 1999,39(1):101-105 Lu Chunyu, Zhang Changshui. Regional Feature Based Fast Human Face Detection[J]. Journal of Tsinghua University, 1999, 39(1): 101-105 (in Chinese)
[8] 王延江,袁保宗. 一种快速彩色图像中复杂背景下人脸检测方法[J]. 电子学报,2002, 30(10): 1566-1569 Wang Yanjiang, Yuan Baozong. A Fast Human Face Detection Method from Color Images under Complex Background[J]. Acta Electronica Sinica, 2002, 30(10): 1565-1569 (in Chinese)
[9] Hsu R, Abdel-Mottaleb M, Jain A K. Face Detection in Color Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 696-706
[10] 艾海舟, 梁路宏. 基于肤色和模板的人脸检测[J]. 软件学报, 2001,12(12):1784-1792 Ai Haizhou, Liang Luhong. Face Detection Based on Skin Color and Template[J]. Journal of Software, 2001, 12(12): 1784-1792 (in Chinese)
[11] Deng Zhenghong, Li Tingting, Zhang Tingting. An Adaptive Tracking Algorithm Based on Mean Shift[C]//2nd International Conference on Advanced Engineering Materials and Technology, 2012:2607-2613
[12] Deng Zhenghong, Wang Meijing, Bai Xiaoping. A New Multi-Focus Image Fusion Algorithm Based on Contrast Ratio and Discrete Wavelet Frame Transform[C]//2nd International Conference on Advanced Engineering Materials and Technology, 2012: 1011-1018
[13] 王航宇. 基于YCbCr高斯肤色模型的人脸检测技术研究[J]. 现代电子技术,2008,31(22): 102-105 Wang Hangyu. Research on the Face Detection Based on YCbCr Skin Gaussian Model[J]. Modern Electronics Technique, 2008, 31(22): 102-105 (in Chinese)
[14] Yang J, Lu W, Waibel A. Skin-Color Modeling and Adaptation[M]. Springer, 1997
[15] Lichtenauer J, Hendriks E, Reinders M. Isophote Properties as Features for Object Detection: Computer Vision and Pattern Recognition[C]//IEEE Computer Society Conference on CVPR, 2005
[16] Hsu R, Abdel-Mottaleb M, Jain A K. Face Detection in Color Images[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(5): 696-706
[17] 魏小辉. 基于人脸面部特征的驾驶员疲劳检测技术研究[D]. 秦皇岛:燕山大学, 2010 Wei Xiaohui. Driver Fatigue Detection System Based on Facial Features[D]. Qin Huangdao, Yanshan University, 2010 (in Chinese)