论文:2015,Vol:33,Issue(6):928-935
引用本文:
高文, 王生楠. T应力对线弹性材料脆性断裂的影响[J]. 西北工业大学学报
Gao Wen, Wang Shengnan. Effect of T-Stress on the Brittle Fracture for Linear Elastic Materials[J]. Northwestern polytechnical university

T应力对线弹性材料脆性断裂的影响
高文, 王生楠
西北工业大学 航空学院, 陕西 西安 710072
摘要:
在考虑裂纹尖端应力场常数项T应力的基础上对传统的最小应变能密度因子准则(minimum strain energy density criterion,SED)进行修正,应用修正的最小应变能因子准则对Ⅰ型、Ⅱ型和Ⅰ-Ⅱ复合型脆性断裂问题分别进行研究,分析T应力对裂纹扩展方向和断裂时刻应力强度因子的影响并给出不同T应力条件下的通用的Ⅰ型、Ⅱ型和Ⅰ-Ⅱ复合型裂纹扩展条件,并将预测结果与现有的试验数据进行比较。分析表明,T应力对于Ⅰ型、Ⅱ型和Ⅰ-Ⅱ复合型断裂均有显著影响,考虑T应力的SED预测结果和试验结果吻合很好。
关键词:    T应力    最小应变能密度因子准则    脆性断裂    应力强度因子    裂纹扩展角   
Effect of T-Stress on the Brittle Fracture for Linear Elastic Materials
Gao Wen, Wang Shengnan
College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The conventional minimum strain energy density (SED) criterion is modified by taking into account the effect of nonsingular stress term (T-stress) in addition to the singular stress term. Then we use the modified SED criterion to study the effect of T-stress on the fracture initiation angle and the critical intensity factors of brittle materials under mode Ⅰ, mode Ⅱ and mixed Ⅰ-Ⅱ mook loading conditions. The general conditions for forecasting mode Ⅰ, mode Ⅱ and mixed Ⅰ-Ⅱ mode fracture under various T-stress are provided. The forecast results are compared with some earlier experimental results. The analysis shows that the presence of T-stress has a significant effect on mode Ⅰ, mode Ⅱ and Ⅰ-Ⅱ mixed mode fracture in brittle fracture of linear elastic materials; there is a good agreement between experimental results and results forecast with the modified SED criterion.
Key words:    T-stress    minimum strain energy density criterion    brittle fracture    stress intensity factors    fracture initiation angle   
收稿日期: 2015-04-23     修回日期:
DOI:
通讯作者:     Email:
作者简介: 高文(1988—),西北工业大学博士研究生,主要从事结构疲劳、断裂、可靠性研究。
相关功能
PDF(1308KB) Free
打印本文
把本文推荐给朋友
作者相关文章
高文  在本刊中的所有文章
王生楠  在本刊中的所有文章

参考文献:
[1] Williams M L. On the Stress Distribution Function of Wide Applicability[J]. Journal of Applied Mechanics, 1957, 24:109-114
[2] Williams J G, Ewing P D. Fracture Under Complex Stress——The Angled Crack Problem[J]. International Journal of Fracture, 1972, 8(4): 441-446
[3] Ueda Y, Ikeda K, Yao T, Aoki M. Characteristic of Brittle Fracture under General Combined Modes Including Those under Bi-Axial Tensile Loads[J]. Engineering Fracture Mechanics, 1983, 18:1131-1158
[4] Cotterell B, Rice J R. Slightly Curved or Kinked Cracks[J]. International Journal of Fracture, 1980, 16(2): 155-169
[5] Leevers P S, Radon J C, Culver L E. Fracture Trajectories in a Biaxially Stressed Plate[J]. Journal of the Mechanics and Physics of Solids, 1976, 24(6): 381-395
[6] Larsson S G, Carlson A J. Influence of Non-Singular Stress Terms and Specimen Geometry on Small-Scale Yielding at Crack Tips in Elastic-Plastic Materials[J]. Journal of The Mechanics and Physics of Solids, 1973, 21: 263-277
[7] Ayatollahi M R, Sedighiani K. Crack Tip Plastic Zone under Mode Ⅰ, Mode Ⅱ and Mixed Mode (Ⅰ+Ⅱ) Conditions[J]. Structural Engineering and Mechanics, 2010, 36: 575-598
[8] Betegón C, Hancock J W. Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields[J]. Journal of Applied Mechanics, 1991, 58: 104-110
[9] Lim I L, Johnston I W, Choi S K, Boland J N. Fracture Testing of a Soft Rock with Semi-Circular Specimens under Three-Point Bending. Part 2——Mixed Mode[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1994, 31(3): 199-212
[12] Smith D J, Ayatollahi M R, Pavier M J. The Role of T-Stress in Brittle Fracture for Linear Elastic Materials under Mixed-Mode Loading[J]. Fatigue Fracture and Engineering Materials, 2001, 24: 137-150
[13] 赵艳华,陈晋,张华. T应力对Ⅰ-Ⅱ复合型裂纹扩展的影响[J]. 工程力学, 2010, 27(4): 5-12 Zhao Yanhua, Chen Jin, Zhang Hua. Influence of T-Stress on Crack Propagation for Ⅰ-Ⅱ Mixed Mode Loading[J]. Engineering Mechanics, 2010, 27(4): 5-12 (in Chinese)
[14] Ayatollahi M R, Aliha M R M. Geometry and Size Effects on Fracture Trajectory in a Limestone Rock under Mixed Mode Loading[J]. Engineering Fracture Mechanics, 2010, 77: 2200-2212
[15] Ayatollahi M R, Aliha M R M, Hassani M M. Mixed Mode Brittle Fracture in PMMA——an Experimental Study Using SCB Specimens[J]. Materials Science and Engineering: A, 2006, 417: 348-356
[16] Kumar B, Chitsiriphanit S, Sun C T. Significance of K-Dominance Zone Size and Nonsingular Stress Field in Brittle Fracture[J]. Engineering Fracture Mechanics, 2011, 78: 2042-2051
[17] Liu S, Chao Y J. Variation of Fracture Toughness with Constraint[J]. International Journal of Fracture, 2003, 124: 113-117
[18] Chao Y J, Liu S, Broviak B J. Brittle Fracture: Variation of Fracture Toughness with Constraint and Crack Curving under Mode I Conditions[J]. Experimental Mechanics, 2001, 41: 232-241
[19] Sih G C. Strain-Energy-Density Factor Applied to Mixed Mode Crack Problems[J]. International Journal of Fracture, 1974, 10(3): 305-321
[20] Schmidt R A. Microcrack Model and Its Significance to Hydraulic Fracturing and Fracture Toughness Testing[C]//Proceedings of 21st US Symposium Rock Mechanics, 1980: 581-90
[21] Ayatollahi M R, Sedighiani Karo. ModeI Fracture Initiation in Limestone by Strain Energy Density Criterion[J]. Theoretical and Applied Fracture Mechanics, 2012, 57: 14-18
[10] Aliha M R M, Ashtari R, Ayatollahi M R. Mode Ⅰ and Mode Ⅱ Fracture Toughness Testing for a Coarse Grain Marble [C]//6th International Conference on Modern Practice in Stress and Vibration Analysis, 2006: 181-188
[11] Khan K, Al-Shayea N A. Effect of Specimen Geometry and Testing Method on Mixed Ⅰ-Ⅱ Fracture Toughness of a Limestone Rock from Saudi Arabia [J]. Rock Mechanics and Rock Engineering, 2000, 33(3): 179-206