论文:2015,Vol:33,Issue(6):913-920
引用本文:
王红波, 祝小平, 周洲, 许晓平. 太阳能无人机螺旋桨滑流气动特性分析[J]. 西北工业大学学报
Wang Hongbo, Zhu Xiaoping, Zhou Zhou, Xu Xiaoping. Aerodynamic Investigation on Propeller Slipstream Flows for Solar Powered Airplanes[J]. Northwestern polytechnical university

太阳能无人机螺旋桨滑流气动特性分析
王红波1,2, 祝小平2, 周洲1,2, 许晓平1,2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 无人机特种技术重点实验室, 陕西 西安 710065
摘要:
针对螺旋桨滑流对太阳能无人机气动性能的影响,基于结构/非结构混合网格,首先使用多重参考系方法对螺旋桨滑流进行准定常计算以获得初始流场,再使用滑移网格方法对螺旋桨的真实转动进行非定常数值模拟。采用NASA涵道螺旋桨进行算例验证,其计算结果与实验值误差仅为5.3%,证明了计算方法的可靠性和准确性,在此基础上数值模拟了滑流在不同转速和来流迎角下对全机气动力的影响。结果表明:螺旋桨滑流具有增升增阻的效果,且转速越高影响越显著,升力、阻力增量最大值分别达到了26.7%和34.7%,全机升阻比则明显减小,最大减小量为26.26%。滑流对机翼弦向压力分布的影响主要集中在前缘,并且在螺旋桨中心轴两侧分别出现了压力最大和最小值;而越接近机翼后缘时,滑流对压力分布的影响越小。
关键词:    太阳能无人机    螺旋桨    滑流    非定常    多重参考系    滑移网格   
Aerodynamic Investigation on Propeller Slipstream Flows for Solar Powered Airplanes
Wang Hongbo1,2, Zhu Xiaoping2, Zhou Zhou1,2, Xu Xiaoping1,2
1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Science and Technology on UAV Laboratory, Northewestern Ploytechnical University, Xi'an 710065, China
Abstract:
The aerodynamic characteristic on solar powered aircraft affected by propeller slipstream flows was investigated based on the structured/unstructured hybrid grid method. The effect of Propeller slipstreams was simulated with Multiple Reference Frames quasi steady method firstly in order to provide an initial flow field for the unsteady numerical simulation using sliding mesh methods. An experimental ducted propeller model belonging to NASA was used to verify the present methods and numerical results with a 5.3% error indicate a high level of agreement with experimental data; this demonstrates that the above methods have good accuracy to numerically simulate the aerodynamics of the solar powered aircraft at different propeller rotational speeds and angles of attack. According to the results, propeller slipstreams lead to notable lift and drag increments: the maximum lift increment and drag increment are respectively 26.7% and 34.7%. However, lift-to-drag ratio values for solar powered airplanes are reduced and the maximum decrement is 26.26%. The position where propeller slipstreams affect the chordwise pressure distribution mainly locates at the leading edge of the wing; this induces opposite pressure changes at the two sides of the propeller rotation shaft. However, the effect of the propeller slipstreams on the chordwise pressure distribution become little at the trailing edge of the wing.
Key words:    aerodynamics    aircraft    angle of attack    computer simulation    drag coefficient    errors    experiments    flow fields    lift drag ratio    mathematical models    mesh generation    Navier Stokes equations    propellers    solar energy    multiple reference frames    sliding mesh    slipstream    solar powered aircraft    unsteady   
收稿日期: 2015-03-17     修回日期:
DOI:
基金项目: 国家"863"课题(2014AA7052002)资助
通讯作者: 周洲(1966—),西北工业大学教授、博士生导师,主要从事无人机设计研究。zhouzhou@nwpu.edu.cn。     Email:zhouzhou@nwpu.edu.cn
作者简介: 王红波(1986—),西北工业大学博士研究生,主要从事垂直起降无人机总体气动设计研究。
相关功能
PDF(3042KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王红波  在本刊中的所有文章
祝小平  在本刊中的所有文章
周洲  在本刊中的所有文章
许晓平  在本刊中的所有文章

参考文献:
[1] 昌敏. 广纬度域驻留太阳能飞机设计及其动力学特性研究[D]. 西安: 西北工业大学, 2013 Chang Min. Research on Design Methodology and Flight Dynamics of Solar-Powered Stratospheric Aircraft from Low to Middle Latitudes[D]. Xi'an: Northwestern Polytechnical University, 2013 (in Chinese)
[2] 刘沛清. 空气螺旋桨理论及应用[M]. 北京: 北京航空航天大学出版社, 2006 Liu Peiqing. Air Propeller Theory and Its Application[M]. Beijing, Beihang University Press, 2006 (in Chinese)
[3] Zori L A J, Rajagopalan R G. Navier-Stokes Calculations of Rotor-Airframe Interaction in Forward Flight [J]. Journal of the American Helicopter Society, 1995, 40(2): 57-67
[4] 段中喆, 刘沛清, 屈秋林,等. 修正的动力盘模型与三维模拟螺旋桨滑流比较[J]. 北京航空航天大学学报, 2013, 39(5): 585-589 Duan Zhongzhe, Liu Peiqing, Qu Qiulin, et al. Slipstream Characters Comparison of Improved Actuator Disk Model and 3D Propeller Numerical Simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 585-589 (in Chinese)
[5] 张刘, 刘李涛, 章荣平,等. 螺旋桨粘性流场非定常数值模拟[J]. 航空动力学报, 2013, 28(12): 2648-2654 Zhang Liu, Liu Litao, Zhang Rongping, et al. Unsteady Numerical Simulation of the Viscous Flow Fields of the Propeller[J]. Journal of Aerospace Power, 2013, 28(12): 2648-2654 (in Chinese)
[6] Stuermer A. Unsteady CFD Simulations of Propeller Installation Effects[R]. AIAA-2006-4969
[7] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7): 1195-1201 Xia Zhenfeng, Yang Yong. Unsteady Numerical Simulation of Interaction Effects of Propeller and Wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1195-1201 (in Chinese)
[8] 杨小川, 王运涛,王光学, 等. 螺旋桨非定常滑流的高效数值模拟研究[J]. 空气动力学学报, 2014, 32(3): 289-294 Yang Xiaochuan, Wang Yuntao, Wang Guangxue, et al. Numerical Simulation of Unsteady Propeller Slipstream[J]. Acta Aerodynamic Sinica, 2014, 32(3): 289-294 (in Chinese)
[9] Fu Weijia, Li Jie, Wang Haojie. Numerical Simulation of Propeller Slipstream Effect on A Propeller-Driven Unmanned Aerical Vehicle[C]//Procedia Engineering, International Conference on Advances in Computational Modeling and Simulation. Kunming, China, 2012: 150-155
[10] Liu Tsunglung. Application of the Sliding Mesh Technique for Helicopter Rotor Flow Simulation[J]. Journal of Aeronautics, Astronautics and Aviation, 2012, 44(3): 201-210
[11] Thouault N, Breitsamter C, Adams N A. Numerical and Experimental Analysis of a Generic Fan-in-Wing Configuration[J]. Journal of Aircraft, 2009, 46(2): 656-666
[12] 许和勇. 基于动态嵌套网格的非定常流动数值模拟[D]. 西安: 西北工业大学, 2009 Xu Heyong. Numerical Simulations of Unsteady Flow Fields Based on Dynamic Overset Grids[D]. Xi'an, Northwestern Ploytechnical University, 2009 (in Chinese)
[13] 李鑫, 白俊强, 王昆. 增升装置及机翼积冰数值模拟[J]. 航空动力学报, 2013, 28(12): 2663-2670 Li Xin, Bai Junqiang, Wang Kun. Numerical Simulation of Ice Accretions on High-Lift System and Aircraft Wing[J]. Journal of Aerospace Power, 2013, 28(12): 2663-2670 (in Chinese)
[14] 范锐军. 混合动力垂直起降飞翼气动布局及特性研究[D]. 西安:西北工业大学, 2010 Fan Ruijun. Numerical Study on Aerodynamic Configuration and Characeristics of Hybrid-Powered VTOL Flying Wing UAV[D]. Xi'an, Northwestern Polytechnical University, 2010 (in Chinese)
[15] Grunwald K J, Goodson K W. Aerodynamic Loads on an Isolated Shrouded-Propeller Configuration for Angle of Attack from -10° to 110°[R]. NASA TN D-995, 1962
[16] 叶靓, 招启军, 徐国华. 基于非结构嵌套网格方法的旋翼地面效应数值模拟[J]. 航空学报, 2009, 30(5): 780-786 Ye Liang, Zhao Qijun, Xu GuoHua. Numerical Simulation on Flowfield of Rotor in Ground Effect Based on Unstructured Embedded Grid Method[J]. Acta Aeronautic et Aeronautic Sinica, 2009, 30(5): 780-786 (in Chinese)
[17] Makino F, Nagai H. Propeller Slipstream Interface with Wing Aerodynamic Characteristics of Mars Airplane at Low Reynolds Number[R]. AIAA-2014-0744
[18] Ananda G K, Deters R W, Selig M S. Propeller Lnduced Flow Effects on Wings at Low Reynold Numbers[R]. AIAA-2013-3193
[19] Sudhakar S, Kumar C, Aprivoli D, et al. Experimental Studies of Propeller Induced Flow Over a Typical Micro Air Vehicle[R]. AIAA-2013-0060
相关文献:
1.段义乾, 史爱明.一种新型的螺旋桨滑流激励盘模型的研究方法[J]. 西北工业大学学报, 2012,30(6): 841-846
2.肖伟, 周洲, 王睿, 李满.分布式推进系统对太阳能无人机横航向飞行品质的影响研究[J]. 西北工业大学学报, 2012,30(6): 868-873