基于对偶分解的分布式协同编队飞行研究 -- 西北工业大学学报,2015,33(6):892-899
论文:2015,Vol:33,Issue(6):892-899
引用本文:
过娟, 褚晶, 闫杰. 基于对偶分解的分布式协同编队飞行研究[J]. 西北工业大学学报
Guo Juan, Chu Jing, Yan Jie. Distributed Cooperative Planning of Formation Flying Based on Dual Decomposition[J]. Northwestern polytechnical university

基于对偶分解的分布式协同编队飞行研究
过娟1, 褚晶2, 闫杰1
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 西北工业大学 航空学院, 陕西 西安 710072
摘要:
针对多智能体编队飞行问题,提出一种新的基于对偶分解的分布式算法,以实现协同航迹规划。首先,将编队飞行问题建模为受线性动力学约束的优化问题,其目标函数中包括智能体各自的独立目标(例如跟踪参考轨迹)以及系统的全局目标(例如总燃料消耗、编队队形等)。其次,为了分布式地求解该优化问题,将其对偶问题分解,把大计算量的原问题转化为多个小的子问题。最后,设计了协同分布式规划算法,并对其收敛性和最优性进行了理论证明。由于该算法只需相邻智能体间的通信,因此具有很强的可扩展性,并能适用于通信能力受限情况下的编队飞行。仿真结果表明,提出的分布式算法能有效地进行协同编队飞行规划;同时通过与集中式方法的比较,其最优性和收敛性得到了验证。
关键词:    分布式优化    对偶分解    编队飞行    协同智能体   
Distributed Cooperative Planning of Formation Flying Based on Dual Decomposition
Guo Juan1, Chu Jing2, Yan Jie1
1. College of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
This paper presents a distributed algorithm to address the cooperative planning of multiple agents flying in formation. First, the cooperative trajectory planning subject to linear dynamics constraints is formulated as an optimization problem, where the objective includes not only private (such as tracking reference trajectories) but also common (such as overall fuel consumption, formation and so on) goals for all agents. Second, in order to solve the optimization problem in a distributed fashion, the dual decomposition technique is employed to replace the original complex problem of very high computational load by multiple smaller sub-problems, which are then distributed over agents. Last but not least, a distributed algorithm is developed to solve the dual problem and thus the original cooperative planning problem because there is no duality gap due to the convexity of the problem. Since the algorithm only requires neighbors' information, it is scalable and applicable when the communication capabilities are limited. Simulation results show the efficiency and efficacy of the algorithm when applied to the cooperative planning of formation flying. Meanwhile, as compared with the centralized method, the optimality and convergence of the algorithm are demonstrated as well.
Key words:    algorithms    computer simulation    convergence of numerical methods    convex optimization    dynamics    efficiency    fuel consumption    matrix algebra    optimization    scalability    trajectories    vectors    cooperative agents    distributed optimization    dual decomposition    formation flying   
收稿日期: 2015-04-01     修回日期:
DOI:
通讯作者:     Email:
作者简介: 过娟(1986—),女,西北工业大学博士研究生,主要从事分布式优化及制导技术的研究。
相关功能
PDF(1257KB) Free
打印本文
把本文推荐给朋友
作者相关文章
过娟  在本刊中的所有文章
褚晶  在本刊中的所有文章
闫杰  在本刊中的所有文章

参考文献:
[1] 彭辉, 沈林成, 朱华勇. 基于分布式模型预测控制的多UAV协同区域搜索[J]. 航空学报,2010, 31(3): 593-601 Peng Hui, Shen Lincheng, Zhu Huayong. Multiple UAV Cooperative Area Search Based on Distributed Model Predictive Control[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 593-601 (in Chinese)
[2] 李远. 多UAV协同任务资源分配与编队轨迹优化方法研究[D]. 长沙:国防科技大学, 2011 Li Yuan. Research on Resources Allocation and Formation Trajectories Optimization for Multiple UAVs Cooperation Mission[D]. Changsha, National University of Defense Technology, 2011 (in Chinese)
[3] 白瑞光,孙鑫,陈秋双,等. 基于Gauss伪谱法的多UAV协同航迹规划[J]. 宇航学报,2014, 35(9): 1022-1029 Bai Ruiguang, Sun Xin, Chen Qiushuang, et al. Multiple UAV Cooperative Trajectory Planning Based on Gauss Pseudospectral Method[J]. Journal of Astronautics, 2014, 35(9): 1022-1029 (in Chinese)
[4] 傅阳光,周成平,王长青,等. 考虑时间约束的无人飞行器航迹规划[J]. 宇航学报,2011, 32(4): 749-755 Fu Yangguang, Zhou Chengping, Wang Changqing, et al. Path Planning for UAV Considering Time Constraint[J]. Journal of Astronautics, 2011, 32(4): 749-755 (in Chinese)
[5] 郑大钟.线性系统理论[M].北京:清华大学出版社,2005 Zheng Dazhong. Theory of Linear Systems[M]. Beijing, Tsinghua Press, 2005 (in Chinese)
[6] Raffard R L, Tomlin C J, Boyd S P. Distributed Optimization for Cooperative Agents: Application to Formation Flight[C]//43rd IEEE Conference on Decision and Control, 2004: 2453-2459
[7] Boyd S, Vandenberghe L. Convex optimization[M]. London, Cambridge University Press, 2004
[8] Michael C, Stephen P. Graph Implementations for Nonsmooth Convex Programs[J]. Recent Advances in Learning and Control, 2008, 371: 95-110