论文:2015,Vol:33,Issue(2):302-308
引用本文:
谢端, 苗瑞霞, 赵健. 叠加相干态与叠加压缩态的相位精度研究[J]. 西北工业大学学报
Xie Duan, Miao Ruixia, Zhao Jian. Phase Precision of Superposition of Coherent State and Superposition of Squeezed State[J]. Northwestern polytechnical university

叠加相干态与叠加压缩态的相位精度研究
谢端1, 苗瑞霞1, 赵健2
1. 西安邮电大学电子工程学院, 陕西西安 710121;
2. 西北大学信息科学与技术学院, 陕西西安 710069
摘要:
利用Cramér-Rao下界法计算了叠加相干态与叠加压缩态可以达到的最优相位精度。结果表明,平均粒子数较大时,叠加相干态的精度只能达到标准量子极限,而叠加压缩态精度更高,达到了海森伯格极限。应用损耗模型,分析了二态在有损信道中传输所受到的影响。研究显示2种量子态的精度都会有所下降。最后又加入了相干态与压缩态,将4种量子状态进行比较。比较结果显示,当各态平均粒子数较大时,压缩态与叠加压缩态精度较高。当平均粒子数较小时,随着损耗的增加,叠加压缩态对外界环境的影响显得很敏感,其精度衰减得更快些。
关键词:    相位精度    叠加相干态    叠加压缩态    有损信道   
Phase Precision of Superposition of Coherent State and Superposition of Squeezed State
Xie Duan1, Miao Ruixia1, Zhao Jian2
1. School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
2. School of Information Science and Technology, Northwest University, Xi'an 710069, China
Abstract:
This paper studies optimal phase precision of superposition of coherent state and superposition of squeezed state using Cramér-Rao bound approach. The results show that precision of superposition of coherent state only achieves the standard quantum limit and precision of superposition of squeezed state achieves Heisenberg limit. Using a dissipation model, we find accuracies of two quantum states decrease with increasing loss degree(η).We also introduce coherent state and squeezed state and compare accuracies of four quantum states. When mean particle number is bigger, phase precisions of squeezed state and superposition of squeezed state are higher. When mean particle number is smaller,with the increasing loss of particle, phase precision of superposition of squeezed state decreases much faster as it is more susceptible to the environment.
Key words:    phase precision    superposition of coherent state    superposition of squeezed state    dissipative channel    Cramer-Rao bounds    errors    estimation    normal distribution    optimization    photons    Poisson distribution    probability    Cramer-Rao lower bound method    dissipation analysis of superposition of squeezed states    dissipation channel    effect of dissipation channel on precision of each quantum state    mean particles number    phase precision    photon dissipation model    precision estimation of superposition of coherent states    precision estimation of superposition of squeezed states   
收稿日期: 2014-11-04     修回日期:
DOI:
基金项目: 国家自然科学基金(51302215)与陕西省教育厅科学研究计划项目(14JK1682)资助
通讯作者:     Email:
作者简介: 谢端(1979-),西安邮电大学讲师,主要从事量子信息及微电子研究。
相关功能
PDF(1067KB) Free
打印本文
把本文推荐给朋友
作者相关文章
谢端  在本刊中的所有文章
苗瑞霞  在本刊中的所有文章
赵健  在本刊中的所有文章

参考文献:
[1] Ospelkaus C, Warring U, Colombe Y, et al. Microwave Quantum Logic Gates for Trapped Ions[J]. Nature, 2011, 476:181-184
[2] Sewell R J, Koschorreck M, Napolitano M, et al. Magnetic Sensitivity beyond the Projection Noise Limit by Spin Squeezing[J]. Phys Rev Lett, 2012, 109:253605
[3] Higgins1 B L, Berry D W, Bartlett S D, et al. Demonstrating Heisenberg-Limited Unambiguous Phase Estimation without Adaptive Measurements[J]. New J Phys, 2009, 11:073023
[4] Emilio Bagan, Alex Monras, Ramon Munoz-Tapia, et al. Phase Variance of Squeezed Vacuum States[J]. Phys Rev A, 2008, 78:043829
[5] Lee Changwoo, Jeong H. Effects of Squeezing on Quantum Nonlocality of Superpositions of Coherent States[J]. Phys Rev A, 2009,80:052105
[6] Stobińska M, Jeong H, Ralph T C. Violation of Bell's Inequality Using Classical Measurements and Nonlinear Local Operations[J]. Phys Rev A, 2007, 75:052105
[7] Ourjoumtsev Alexei, Tualle-Brouri Rosa, Laurat Julien, et al. Generating Optical Schr dinger Kittens for Quantum Information Processing[J]. Science, 2006,312(5770):83-86
[8] Ourjoumtsev Alexei, Jeong Hyunseok, Tualle-Brouri Rosa, et al. Generation of Optical Schr dinger Cats from Photon Number States[J]. Nature, 2007, 448:784-786
[9] Kołodyński J, Demkowicz-Dobrzański R. Phase Estimation without a Priori Phase Knowledge in the Presence of Loss[J]. Phys Rev A, 2010, 82:053804
[10] Knysh S, Smelyanskiy V N, Durkin G A. Scaling Laws for Precision in Quantum Interferometry and the Bifurcation Landscape of the Optimal State[J]. Phys Rev A, 2011, 83:021804
[11] Cooper J J, Dunningham J A. Towards Improved Interferometric Sensitivities in the Presence of Loss[J]. New Journal of Physics, 2011, 13(11):115003
[12] Helstrom C W. Quantum Detection and Estimation Theory[M]. Academic Press, New York, 1976
[13] Vittorio Giovannetti, Seth Lloyd, Lorenzo Maccone. Advances in Quantum Metrology[J]. Nature Photonics, 2011, 5:222-229
[14] Holevo A S. Covariant Measurements and Imprimitivity Systems[J]. Lect Notes Maths, 1984, 1055:153-172
[15] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products[M]. Massachusetts Academic Press, 2007
[16] Animesh Datta, Lijian Zhang, Nicholas Thomas-Peter, et al. Quantum Metrology with Imperfect States and Detectors[J]. Phys Rev A, 2011, 83:063836
[17] 金玉明,薛兴恒,顾新身,等.实用积分表[M].合肥:中国科技大学出版社,2006 Jing Y M, Xue X H, Gu X S, et al. The Utility Table of Integrals[M]. Hefei:University of Science and Technology of China Press, 2006(in Chinese)