基于SST湍流模型的圆盘空化器超空泡特性仿真分析 -- 西北工业大学学报,2015,33(2):259-264
论文:2015,Vol:33,Issue(2):259-264
引用本文:
侯保新, 支希哲, 刘永寿, 刘伟. 基于SST湍流模型的圆盘空化器超空泡特性仿真分析[J]. 西北工业大学学报
Hou Baoxin, Zhi Xizhi, Liu Yongshou, Liu Wei. Numerical Simulation on Supercavity Characteristics of Disc Cavitator Based on SST Turbulence Model[J]. Northwestern polytechnical university

基于SST湍流模型的圆盘空化器超空泡特性仿真分析
侯保新, 支希哲, 刘永寿, 刘伟
西北工业大学力学与土木建筑学院, 陕西西安 710129
摘要:
基于全空化模型和SST k-ω湍流模型,对圆盘空化器的空化流动进行了仿真。首先,分析了平头回转体表面的压力分布,所得结果与Rouse和McNown的试验结果符合良好,验证了文中数值方法的有效性。其次,计算得到了不同空化数下无攻角圆盘空化器的超空泡形态特性和阻力特性,并与经验公式进行比较,二者具有良好的一致性。最后,对带攻角圆盘空化器进行了仿真,分析了攻角对超空泡形态特性和流体动力特性的影响。研究表明空化数和攻角都对超空泡的主要尺寸有影响,而攻角还会对超空泡的对称性和回射流现象产生显著的影响,此外攻角对圆盘空化器的流体动力特性也有比较大的影响,尤其是对升力系数有着直接的影响。研究结果为圆盘空化器在水下航行体上的应用提供了参考。
关键词:    SST湍流模型    超空泡形态    流体动力    空化数    攻角   
Numerical Simulation on Supercavity Characteristics of Disc Cavitator Based on SST Turbulence Model
Hou Baoxin, Zhi Xizhi, Liu Yongshou, Liu Wei
Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
Based on the full cavitation model and SST k-ω turbulence model, the cavitating flow of disc cavitator is simulated with commercial CFD code Fluent 6.3. First, results are presented for the pressure distribution on the surface of an axisymmetric blunt body and they show good agreement with the experimental data of Rouse and McNown, which, we believe, validates the effectiveness of the proposed numerical method. Next, the characteristics of supercavity shape and drag of disc cavitator for zero attack angle are obtained for different cavitation numbers; these are used to analyze the impact of cavitation number on cavitating flow. The results are compared with the empirical formula and they show good consistency. Lastly, the cavitating flow of disc cavitator with variable attack angle is simulated and the impact of attack angle on the characteristics of supercavity shape and hydrodynamic is analyzed. Studies show preliminarily that:(1) both cavitation number and attack angle have an effect on the main dimensions of supercavity and the attack angle also has a significant effect on the symmetry and reentrant jet phenomenon; (2) the attack angle has a relatively large effect on the hydrodynamic characteristics of disc cavitator and especially it has a direct effect on the lift coefficient. These results, we believe, are valuable in the application of disc cavitator to submerged moving bodies.
Key words:    angle of attack    cavitation    computational efficiency    computational fluid dynamic    computer simulation    computer software    drag    drag coefficient    efficiency    experiments    hydrodynamics    lift    lift drag ratio    mathematical models    mesh generation    pressure distribution    turbulence models    cavitation number    SST turbulence model    supercavity shape   
收稿日期: 2014-09-12     修回日期:
DOI:
基金项目: 高等学校学科创新引智计划项目(B07050)与陕西省自然科学基础研究计划(2013JM6011)资助
通讯作者:     Email:
作者简介: 侯保新(1989-),西北工业大学硕士研究生,主要从事水下航行体空化特性研究。
相关功能
PDF(1725KB) Free
打印本文
把本文推荐给朋友
作者相关文章
侯保新  在本刊中的所有文章
支希哲  在本刊中的所有文章
刘永寿  在本刊中的所有文章
刘伟  在本刊中的所有文章

参考文献:
[1] 颜开,褚学森,许晟,等.超空泡流体动力学研究进展[J].船舶力学, 2006, 10(4):148-155 Yan Kai, Chu Xuesen, Xu Sheng, et al. Research Progress of Supercavitation Hydrodynamics[J]. Journal of Ship Mechanics, 2006, 10(4):148-155(in Chinese)
[2] 曹伟,魏英杰,王聪,等.超空泡技术现状、问题与应用[J].力学进展, 2006, 36(4):571-579 Cao Wei, Wei Yingjie, Wang Cong, et al. Current Status, Problems and Applications of Supercavitation Technology[J]. Advances in Mechanics, 2006, 36(4):571-579(in Chinese)
[3] 杨莉,张庆明.超空泡技术的应用现状和发展趋势[J].战术导弹技术, 2006(5):6-10 Yang Li, Zhang Qingming. Current Application and Perspectives on Supercavitation Technology Research[J]. Tactical Missile Technology, 2006(5):6-10(in Chinese)
[4] Shih T H, Liou W W, Shabbir A, et al. A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows[J]. Computers Fluids, 1995, 24(3):227-238
[5] Menter F R, Kuntz M, Langtry R. Ten Years of Industrial Experience with the SST Turbulence Model[J]. Turbulence, Heat and Mass Transfer, 2003(4):625-632
[6] Singhal A K, Athavale M M, Li H, et al. Mathematical Basis and Validation of the Full Cavitation Model[J]. Journal of Fluids Engineering, 2002, 124(3):617-624
[7] Menter F R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 1994, 32(8):1598-1605
[8] Rouse H, Mcnown J S. Cavitation and Pressure Distribution, Head Forms at Zero Angle of Yaw[R]. Iowa City:State University of Iowa, 1948
[9] Garabedian P R. Calculation of Axially Symmetric Cavities and Jets[J]. Pacific Journal of Mathematics, 1956, 6(4):611-684