基于拟生灭过程的群集机器人任务分配宏观分析与预测 -- 西北工业大学学报,2015,33(1):63-69
论文:2015,Vol:33,Issue(1):63-69
引用本文:
周菁, 杨飞生, 秦茂源, 慕德俊, 黄兴利. 基于拟生灭过程的群集机器人任务分配宏观分析与预测[J]. 西北工业大学学报
Zhou Jing, Yang Feisheng, Qin Maoyuan, Mu Dejun, Huang Xingli. Macroscopic Analysis and Prediction of Task Allocation of Swarm Robotic Systems Based on Quasi-Birth-and-Death Process[J]. Northwestern polytechnical university

基于拟生灭过程的群集机器人任务分配宏观分析与预测
周菁, 杨飞生, 秦茂源, 慕德俊, 黄兴利
西北工业大学自动化学院, 陕西西安 710072
摘要:
以预测由个体局部规则涌现的全局行为为目的,提出一种新的群集机器人任务分配宏观模型,提供了解系统性能与作为模型参数的群集规模之间关系的分析手段,尤其是该模型对于任务类型和群集规模都没有限制。通过拟生灭过程模型建立系统任务分配动态性的演化方程,首次引入矩阵分析法到群集机器人领域,求解了宏观模型的闭式稳态解,发现了系统任务分配在稳态服从的统计规律。进行了包含上百个机器人的仿真,其结果说明了模型预测与分析的正确性和可靠性。
关键词:    宏观模型    拟生灭过程    群集机器人系统   
Macroscopic Analysis and Prediction of Task Allocation of Swarm Robotic Systems Based on Quasi-Birth-and-Death Process
Zhou Jing, Yang Feisheng, Qin Maoyuan, Mu Dejun, Huang Xingli
Department of Automatic Control, Northwestern Polytechinal University, Xi'an 710072, China
Abstract:
Swarm robotic engineering aims to design robust, expandable and flexible swarm robotic systems to fulfill well-defined global goals. The collective behaviors ought to be analyzable and predicable so that the designer can determine whether the goal is achieved or not. In this paper we propose a novel macroscopic mathematical model for multi-robot task allocation. Our model can predict the global behavior emerging from local rules to check whether the swarm does precisely what it is designed to do or not. Besides it also provides the maneuver to gain insight of the properties of the system and find relationship between swarm size and the model parameter which makes an impact on the system performance. Especially, our novel model has no limitation on the number of task types. Quasi-birth-and-death process model is employed to model the dynamics of the state of the whole swarm directly. We introduce matrix analytic method to swarm robotics for calculating the closed-form expression in steady state, then we find the statistic law that task allocation descriptor obeys. We conduct simulations with hundred of robots, and the experiments verify the correctness and reliability of the proposed model.
Key words:    calculations    computer simulation    design    forecasting    Markov processes    mathematical models    MATLAB    matrix algebra    probability    probability density function    reliability    robots    statistics    vectors    macroscopic model    quasi-birth-and-death process    swarm robotic system   
收稿日期: 2014-09-08     修回日期:
DOI:
基金项目: 国家自然科学基金(61403311)、浙江省自然科学基金(LY14F020030)、流程工业综合自动化国家重点实验室开放课题(PAL-N201409)与中央高校基本科研业务费(3102014JCQ01068)资助
通讯作者:     Email:
作者简介: 周菁(1983-),女,西北工业大学博士研究生,主要从事多机器人系统研究。
相关功能
PDF(1516KB) Free
打印本文
把本文推荐给朋友
作者相关文章
周菁  在本刊中的所有文章
杨飞生  在本刊中的所有文章
秦茂源  在本刊中的所有文章
慕德俊  在本刊中的所有文章
黄兴利  在本刊中的所有文章

参考文献:
[1] Correll N, Martinoli A. Modeling and Designing Self-Organized Aggregation in a Swarm of Miniature Robots[J]. International Journal of Robotics Research, 2011, 30(5):615-626
[2] Kernbach S, Häbe D, Kernbach O, et al. Adaptive Collective Decision-Making in Limited Robot Swarms without Communication[J]. The International Journal of Robotics Research, 2013, 32(1):35-55
[3] Hamann H, W rn H. A Framework of Space-Time Continuous Models for Algorithm Design in Swarm Robotics[J]. Swarm Intelligence, 2008, 2(2):209-239
[4] Massink M, Brambilla M, Latella P, et al. On the Use of Bio-PEPA for Modelling and Analysing Collective Behaviours in Swarm Robotics[J]. Swarm Intelligence, 2013, 7(2):201-228
[5] Lerman K, Jones C, Galstyan A, et al. Analysis of Dynamic Task Allocation in Multi-Robot Systems[J]. The International Journal of Robotics Research, 2006, 25(3):225-241
[6] Zhou J, Mu D, Yang F S, et al, A Distributed Approach to Load Balance for Multi-Robot Task Allocation[C]//Proceedings of the IEEE International Conference on Mechatronics and Automation, 2014:612-617
[7] Zhou J, Mu D, Yang F S, et al, Labor Division for Swarm Robotic Systems with Arbitrary Finite Number of Task Types[C]//Proceedings of the IEEE International Conference on Information and Automation, 2014:1113-1118
[8] Latouche G, Ramaswami V, Introduction to Matrix Analytic Methods in Stochastic Modeling[M]. 3600 University City Science Center, Philadelphia, PA, Society for Industrial and Applied Mathematics, 1999
[9] Neuts M. F., Matrix-Geometric Solutions in Stochastic Models[M]. Baltimore, Maryland, The John Hopkins University Press, 1981