复杂构型高精度静气动弹性分析方法及其应用研究 -- 西北工业大学学报,2015,33(1):14-20
论文:2015,Vol:33,Issue(1):14-20
引用本文:
刘艳, 白俊强, 华俊, 刘南. 复杂构型高精度静气动弹性分析方法及其应用研究[J]. 西北工业大学学报
Liu Yan, Bai Junqiang, Hua Jun, Liu Nan. A High-Fidelity Static Aeroelastic Analysis Method for Complex Configuration and Its Application[J]. Northwestern polytechnical university

复杂构型高精度静气动弹性分析方法及其应用研究
刘艳1, 白俊强1, 华俊2, 刘南1
1. 西北工业大学航空学院, 陕西西安 710072;
2. 中国航空研究院, 北京 100012
摘要:
为了准确地预测增升装置的气动弹性变形,基于Navier-Stokes方程求解器和结构静力学方程,建立了一种静气动弹性分析方法。发展了一种全局/局部混合的数据交换方式,解决了复杂构型数据交换过程中相邻部件间数据干扰的问题。同时,建立了变形能力强、引入并行算法的基于RBF插值技术的动网格方法,很好地保证了复杂构型网格的变形能力。此外,为了提高静气弹分析效率,所建立方法根据收敛特点引入了加速收敛技术。通过F6翼身组合体和某大型客机着陆构型,验证文中发展的静气动弹性分析方法的可行性和鲁棒性。分析结果表明,弹性变形最终导致大型客机着陆构型8°迎角状态时的升力系数减小约1.0%。
关键词:    Navier-Stokes方程    静气动弹性力学    RBF插值技术    动网格    大型客机   
A High-Fidelity Static Aeroelastic Analysis Method for Complex Configuration and Its Application
Liu Yan1, Bai Junqiang1, Hua Jun2, Liu Nan1
1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Chinese Aeronautical Establishment, Beijing 100012, China
Abstract:
For a large transport aircraft with high aspect ratio wing, aeroelasticity is one of the most important factors that affects the aerodynamic efficiency of a high-lift configuration. To analyze its static aeroelasticity accurately, we propose the high-fidelity static aeroelastic analysis method based on the solution of Navier-Stokes equations and structural equations. We develop a global-local mixed algorithm for exchanging data between computational fluid dynamics results and computational structural dynamics results, which eliminates the data interference among adjacent parts of the complex configuration. We also work out the dynamic mesh method that uses the radial basis function interpolation technique that has good elastic deformation and introduces the parallel algorithm, thus guaranteeing the mesh deformation capability of the complex configuration. In order to enhance the static aeroelastic analysis efficiency, we introduce the convergence acceleration technique based on the convergence characteristics. Finally, we use the DLR-F6 wing body configuration and the high-lift configuration of a large transport aircraft to verify the feasibility and robustness of the static aeroelastic analysis method. The verification results show that the elastic deformation decreases the lift coefficient of the high-lift configuration results by around 1.0% under the influence of aeroelasticity.
Key words:    aeroelasticity    aerodynamic configurations    Navier-Stokes equations    algorithms    computational efficiency    aspect ratio    computational structural dynamics    computational fluid dynamics    convergence    deformation    elastic deformation    finite volume method    finite element method    flow fields    lift    interpolation    Mach number    mathematical models    radial basis functions    structural dynamics    turbulence models    transport aircraft    topology    wings   
收稿日期: 2014-09-11     修回日期:
DOI:
通讯作者:     Email:
作者简介: 刘艳(1988-),女,西北工业大学博士研究生,主要从事气动弹性力学及飞行器气动设计研究。
相关功能
PDF(2403KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘艳  在本刊中的所有文章
白俊强  在本刊中的所有文章
华俊  在本刊中的所有文章
刘南  在本刊中的所有文章

参考文献:
[1] Garner P L, Meredith P T, Stoner R. Areas for Future CFD Development as Illustrated by Transport Aircraft Applications[R]. AIAA-1991-1527
[2] Vanderburg J W, Eliasson P, Delille T, et al. Geometric Installation and Deformation Effects in High-Lift Flows[J]. AIAA Journal, 2009, 47(1):60-70
[3] Liu Y, Bai J Q, Hua J. Static Aeroelasticity Analysis of High Aspect Ratio Wing and the Jig-Shape Design Based on Multi-Block Structural Grid[J]. Advanced Engineering and Materials, 2013, 302:377-383
[4] 万志强,邓立东,杨超,等.基于非线性试验气动力的飞机静气动弹性响应分析[J].航空学报, 2005, 26(4):439-455 Wan Z Q, Deng L D, Yang C, et al. Aircraft Static Aeroelstic Response Analysis Based on Nonlinear Experimental Aerodynamic Data[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4), 439-455(in Chinese)
[5] Livne E, Terrence A. Weisshaar. Aeroelasticity of Nonconvertional Aircraft Configurations-Past and Future[J]. Journal of Aircraft, 2003, 40(6):1047-1065
[6] 邱亚松,白俊强,李亚林,等.复杂几何细节对增升装置气动性能影响研究[J].航空学报, 2012, 33(3):421-429 Qiu Y S, Bai J Q, Li Y L, et al. Study on Influence of Complex Geometry Details on the Aerodynamic Performance of High-Lift System[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):421-429(in Chinese)
[7] 白俊强,刘南,邱亚松,等.大型民用运输机短舱涡流片增升效率以及参数影响研究[J].西北工业大学学报, 2013, 31(4):522-529 Bai J Q, Liu N, Qiu Y S, et al. Investigation on Influence of Nacelle Chine of Large Civil Transport Aircraft on High-Lift Efficiency and on Influence of Relevant Parameters[J]. Journal of Northwestern Polytechnical University, 2013, 31(4):522-529(in Chinese)
[8] John D Anderson,吴颂平,刘赵淼.计算流体力学基础及其应用[M].北京:机械工业出版社, 2008 John Anderson, Wu S P, Liu Z M. Computational Fluid Dynamic Basic and Application[J]. Beijing, Mechanical Industry Press, 2008(in Chinese)
[9] Frank R. Scattered Data Interpolation:Tests of Some Methods[J]. Math Comp, 1982, 38(175):191-200
[10] Ahrem R, Beckert A, Wendland H. A Meshless Spatial Coupling Scheme for Large-Scale Fluid-Structure Interpolation Problems[J]. Computer Modeling in Enginnering and Sciences, 2006, 12:121-136
[11] Beckert A, Wendland H. Multivariate Interpolation for Fluid-Structure-Interaction Problems Using Radial Basis Functions[J]. Aerospace Science and Technology, 2001, 5:125-134
[12] 刘艳,白俊强,华俊,等.非线性流固耦合分析方法研究[C]//中国力学大会2013, 2013 Liu Y, Bai J Q, Hua J, et al. An Approach to the Nonlinear Fluid-Structure Coupling Technical[C]//CCTAM2013, 2013(in Chinese)
[13] Allen C B, Rendall T C S. Unified Approach to CFD-CSD Interpolation and Mesh Motion Using Radial Basis Functions[R]. AIAA-2007-3804
[14] Buhmann M. Radial Basis Functions[M]. Cambridge, Cambridge University Press, 2005
[15] 白俊强,刘南,邱亚松,等.基于RBF动网格方法和改进粒子群优化算法的多段翼型优化[J].航空学报, 2013, 34(12):2701-2715 Bai J Q, Liu N, Qiu Y S, et al. Optimization of Multi-Foil Basing on RBF Mesh Deformation Method and Modified Particle Swarm Optimization Algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2701-2715(in Chinese)
[16] Rakowitz M. 2nd AIAA Drag Prediction Workshop DLR-F6 Geometry & Issues[EB/OL].(2003-09-01).http://www.awc.larc.nasu.gov/tsab/cfdlarc/aiau-dpw/workshop2/workshop2.html.