几何大变形太阳能无人机非线性气动弹性稳定性研究 -- 西北工业大学学报,2015,33(1):1-8
论文:2015,Vol:33,Issue(1):1-8
引用本文:
王伟, 周洲, 祝小平, 王睿. 几何大变形太阳能无人机非线性气动弹性稳定性研究[J]. 西北工业大学学报
Wang Wei, Zhou Zhou, Zhu Xiaoping, Wang Rui. Exploring Aeroelastic Stability of Very Flexible Solar Powered UAV with Geometrically Large Deformation[J]. Northwestern polytechnical university

几何大变形太阳能无人机非线性气动弹性稳定性研究
王伟1, 周洲1, 祝小平2, 王睿1
1. 西北工业大学航空学院, 陕西西安 710072;
2. 西北工业大学无人机研究所, 陕西西安 710065
摘要:
大柔性太阳能无人机在气动载荷的作用下产生较大的弯曲变形,机翼结构的刚度、质量分布等特性亦发生较大改变,线性理论无法满足这类飞机气动弹性稳定性分析的精度要求。基于Co-rotational(CR)理论,推导了结构变形后的切线刚度矩阵和质量矩阵,建立了大柔性机翼结构动力学模型;采用建立在局部气流坐标系下的片条非定常气动力模型,建立了考虑几何非线性效应的大柔性无人机气动弹性运动方程。引入准模态假设,采用P-k法研究了几何大变形对类"太阳神"布局太阳能无人机的气动弹性稳定性的影响。研究结果表明:随着弯曲变形的增加,非线性颤振速度可降低10%以上,非线性颤振频率可下降8%;合理的增加扭转刚度、前移弹性轴、前移剖面质心等,均可以有效改善几何大变形引起的不利影响。研究工作对大柔性飞机的气动弹性设计具有一定的参考意义。
关键词:    几何大变形    CR理论    切线质量矩阵    大柔性机翼    非线性颤振    太阳能无人机   
Exploring Aeroelastic Stability of Very Flexible Solar Powered UAV with Geometrically Large Deformation
Wang Wei1, Zhou Zhou1, Zhu Xiaoping2, Wang Rui1
1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. The UAV Research Institute, Northwestern Polytechnical University, Xi'an 710065, China
Abstract:
A very flexible solar powered UAV under aerodynamic loading undergoes large deformation, thus changing the stiffness characteristics and mass distribution of its wing structure. It is impossible to obtain its precise aeroelastic stability with the linear theory. Therefore we use the co-rotational theory to develop the aeroelastic stability analysis algorithm suitable to a very flexible aircraft, derive the expression of tangent stiffness matrix and mass matrix of a spatial two-node beam element, and establish the dynamic model of a geometrically nonlinear structure. Using the unsteady aerodynamic strip model and the quasi-mode assumption, we derive the aeroelastic motion equations. We use the P-K method to analyze the aeroelastic stability characteristics of a solar-powered UAV with the layout similar to Helios under geometrically large deformation. The analysis results on a test are compared with other analysis results given in Table 2, and they show good agreement:as the wing deformation increases, the nonlinear flutter speed decreases by 10%, and the nonlinear flutter frequency decreases by 8%; the aeroelastic stabilities of a solar-powered UAV will be improved by increasing torsional rigidity or by moving its elastic axis and the mass center of its wing section toward the leading edge.
Key words:    aeroelasticity    algorithms    aircraft    angular velocity    angular momentum    design    dynamic models    elastic deformation    flexible wings    flutter (aerodynamics)    matrix algebra    momentum    solar energy    stiffness matrix    unmanned aerial vehicles (UAV)    wings    co-rotational theory    geometrically large deformation    tangent stiffness matrix.   
收稿日期: 2014-09-02     修回日期:
DOI:
基金项目: 国家自然科学基金(110202162、11302178)与中国博士后科学基金(2014M560803)资助
通讯作者:     Email:
作者简介: 王伟(1988-),西北工业大学博士研究生,主要从事无人机总体设计、气动弹性学及飞行力学研究。
相关功能
PDF(1454KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王伟  在本刊中的所有文章
周洲  在本刊中的所有文章
祝小平  在本刊中的所有文章
王睿  在本刊中的所有文章

参考文献:
[1] Kirk Flittie, Bob Curtin. Pathfinder Solar-Powered Aircraft Flight Performance[R]. AIAA-1998-4446
[2] 昌敏,周洲,郑志成.太阳能飞机原理及总体参数敏度分析[J].西北工业大学学报, 2010, 28(5):792-796 Chang Min, Zhou Zhou, Zheng Zhicheng. Flight Principles of Solar-Powered Airplane and Sensitivity Analysis of Its Conceptual Parameters[J]. Journal of Northwestern Polytechnical University, 2010, 28(5):792-796(in Chinese)
[3] 王伟,周洲,祝小平,王睿.考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J].西北工业大学学报, 2014, 32(4):499-504 Wang Wei, Zhou Zhou, Zhu Xiaoping,Wang Rui. Static Aeroelastic Characteristics Analysis of a Very Flexible Solar Powered UAV with Geometrical Nonlinear Effect Considered[J]. Journal of Northwestern Polytechnical University, 2014, 32(4):499-504(in Chinese)
[4] Patil M J, Hodges D H. On the Importance of Aerodynamic and Structural Geometrical Nonlinearities in Aeroelastic Behavior of High-Aspect-Ration Wings[J]. Journal of Fluids and Structures, 2004, 19:905-915
[5] Patil M J, Hodges D H, Cesnik C E S. Nonlinear Aeroelasticity and Flight Dynamics of High-Altitude Long-Endurance Aircraft[R]. AIAA-99-1470
[6] Patil M J, Hodges D H. Flight Dynamics of Highly Flexible Flying Wings[J]. Journal of Aircraft,2006,43(6):1790-1798
[7] Zhang Jian, Xiang Jinwu. Nonlinear Aeroelastic Response of High-Aspect-Ratio Flexible Wings[J]. Chinese Journal of Aeronautics,2009,22(4):355-363
[8] Rafael Palacios, Joseba Murua, Robert Cook. Structural and Aerodynamic Models in Nonlinear Flight Dynamics of Very Flexible Aircraft[J]. AIAA Journal, 2010,48(11):2648-2659
[9] 周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报,2006,41(6):690-695 Zhou Lingyuan, Li Qiao. Updated Lagrangian Co-Rotational Formulation for Geometrically Nonlinear FE Analysis of 3D Beam Element[J]. Journal of Southwest Jiaotong Unoversity,2006,41(6):690-695(in Chinese)
[10] Belytschko T, Schwer L. Large Displacement, Transient Analysis of Space Frames[J]. International Journal for Numerical Methods in Engineering, 1977, 11:65-84
[11] Crisfield M A, Galvanetto U, JeleniĉG. Dynamics of 3-D Co-Rotational Beams[J]. Computational Mechanics, 1997,20:507-519
[12] Le T N, Battini J M, Hjiaj M. Dynamics of 3D Beam Elements in a Corotational Context:A Comparative Study of Established and New Formulation[J]. Finite Elements in Analysis and Design, 2012, 61:97-111
[13] Xie Changchuan, Yang Chao. Linearization Methods of Nonlinear Aeroelastic Stability for Complete Aircraft with High-Aspect-Ratio Wings[J].Sci China Tech Sci, 2011, 54:403-411
[14] Patil M J, Hodges D H. limit-Cycle Oscillations in High Aspect Ration Wings[J]. Journal of Fluid and Structures, 2001,15:107-132
相关文献:
1.王伟, 周洲, 祝小平, 段静波, 张驰.基于CR理论的大柔性太阳能无人机非线性配平及飞行载荷分析[J]. 西北工业大学学报, 2015,33(4): 566-572
2.王伟, 周洲, 祝小平, 王睿.考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J]. 西北工业大学学报, 2014,32(4): 499-504