一种基于K-Mean算法的移动应用兼容性测试方法 -- 西北工业大学学报,2015,33(3):512-515
论文:2015,Vol:33,Issue(3):512-515
引用本文:
张涛, 周文强, 李坤, 王海鹏, 成静. 一种基于K-Mean算法的移动应用兼容性测试方法[J]. 西北工业大学学报
Zhang Tao, Zhou Wenqiang, Li Kun, Wang Haipeng, Cheng Jing. Selecting Mobile Devices for Mobile Compatibility Testing Using K-Mean Algorithm[J]. Northwestern polytechnical university

一种基于K-Mean算法的移动应用兼容性测试方法
张涛, 周文强, 李坤, 王海鹏, 成静
西北工业大学 软件与微电子学院, 陕西 西安 710072
摘要:
随着移动应用市场的快速发展,移动应用兼容性测试问题日显突出和紧迫。本文提出了一种基于K-Mena算法的移动应用兼容性测试设备选择方法。该方法首先建立移动应用兼容性测试设备的特征树模型,确定各个基本特征的测试值,定义初始K值和中心点。然后给出一种基于设备特征树模型的特征距离计算方法。最后基于K-Mean聚类算法,对移动设备进行聚类,从各个聚类中选择适合的移动应用兼容性测试设备。通过实例进行验证分析,结果表明该方法能够帮助测试人员选择适合的测试设备,从而降低测试成本,提高测试效率和测试质量。
关键词:    移动应用    兼容性测试    K-Mean聚类算法    特征树模型   
Selecting Mobile Devices for Mobile Compatibility Testing Using K-Mean Algorithm
Zhang Tao, Zhou Wenqiang, Li Kun, Wang Haipeng, Cheng Jing
Department of Software Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
With the rapid development of mobile application's market, mobile application compatibility testing has become a most prominent and urgent problem. We propose a systematic method of selecting adaptive mobile devices for mobile application compatibility testing; it is based on K-mean algorithm. Firstly, the compatibility feature tree model of mobile application is constructed, and every leaf node of feature tree is set some testing values by experience. So initial value of K and cluster centers are set. Secondly, a layered and recursive algorithm is described for calculating feature distance between mobile devices. Thirdly, all mobile devices can be clustered automatically with K-mean algorithm, and testing devices can be selected from different clusters according to popularity market share of devices. Finally we test two selected mobile applications with proposed method, proving that the method is effective in selecting mobile devices for compatibility testing of mobile applications.
Key words:    algorithms    calculations    cameras    clustering algorithms    global positioning system    mathematical models    mobile devices    optical resolving power    pixels    wireless local area networks(WLAN)    compatibility testing    K-mean clustering algorithm    mobile application    mobile devices feature tree    test coverage.   
收稿日期: 2015-01-08     修回日期:
DOI:
基金项目: 国家自然科学基金(61103003)与航天科技支撑计划(2014HTXGO)资助
通讯作者:     Email:
作者简介: 张涛(1976—),西北工业大学副教授、博士,主要从事移动云测试、软件安全性技术以嵌入式软件技术研究。
相关功能
PDF(1187KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张涛  在本刊中的所有文章
周文强  在本刊中的所有文章
李坤  在本刊中的所有文章
王海鹏  在本刊中的所有文章
成静  在本刊中的所有文章

参考文献:
[1] Adrian Holzera, Jan Ondrusb. Mobile Application Market: A Developer's Perspective[J]. Telematics and Informatics, 2014, 28(1): 22-31
[2] Kakkar K, SNMC Kakkar M. Risk Analysis in Mobile Application Development[C]//Proceedings of 4th International Conference on the Next Generation Information Technology, Noida, 2013: 26-27
[3] Gao J, Bai X, Tsai W T, Uehara T. Mobile Application Testing: a Tutorial[J]. IEEE Computer, FEBRUARY, 2014: 4-5
[4] Gao Jerry, Tsai Weitek, Paul Ray, Bai Xiaoying, Uehara Tadahiro. Mobile Testing-as-a-Service (MTaaS)——Infrastructures, Issues, Solutions and Needs[C]//Proceeding of 2014 IEEE 15th International Symposium on High-Assurance Systems Engineering (HASE), Miami Beach, FL, 2014: 158-167