论文:2015,Vol:33,Issue(3):472-477
引用本文:
许行之, 高亚奎, 章卫国. 考虑助力器动力学的舵系统结构非线性颤振特性分析[J]. 西北工业大学学报
Xu Xingzhi, Gao Yakui, Zhang Weiguo. Analyzing Structural Nonlinear Flutter Characteristics for a Rudder with Dynamic Stiffness Considered[J]. Northwestern polytechnical university

考虑助力器动力学的舵系统结构非线性颤振特性分析
许行之, 高亚奎, 章卫国
西北工业大学 自动化学院, 陕西 西安 710072
摘要:
针对操纵系统的结构非线性问题,提出了2种考虑动刚度特性的舵系统(助力器系统和舵面耦合系统)颤振分析方法。利用分支模态法建立了以助力器系统动力学方程为基础的时域和频域非线性控制方程。使用描述函数法和一种改进的迭代方法得到系统控制命令为0时的预载间隙非线性颤振特性,比较了时域和频域结果。结果显示,在非线性条件下,控制命令的幅值和相位对颤振特性都有影响。
关键词:    颤振    舵面    动刚度    结构非线性    迭代法    描述函数   
Analyzing Structural Nonlinear Flutter Characteristics for a Rudder with Dynamic Stiffness Considered
Xu Xingzhi, Gao Yakui, Zhang Weiguo
Department of Automatic Control, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Two new methods which can analyze the rudder's flutter characteristics are used respectively for structurally nonlinear hydraulic booster with its dynamic stiffness considered. The component mode substitution method is used to establish the nonlinear governing equations respectively in time domain and frequency domain based on the fundamental dynamic equations of the hydraulic booster and rocker arm. The flutter characteristics containing preload freeplay nonlinearity are obtained respectively with the existing describing function method and a proposed iterative method when control command is zero. A comparison between the results of time domain and those of frequency domain is studied. The results show that the amplitude and phase of the control command have also an influence on the flutter characteristics under the nonlinear condition.
Key words:    flutter    rudders    dynamic stiffness    structural nonlinearity    iterative methods    describing functions   
收稿日期: 2014-09-28     修回日期:
DOI:
基金项目: 航空科学基金(20125853035)资助
通讯作者:     Email:
作者简介: 许行之(1976—),西北工业大学博士研究生,主要从事非线性气动弹性力学与控制的研究。
相关功能
PDF(1362KB) Free
打印本文
把本文推荐给朋友
作者相关文章
许行之  在本刊中的所有文章
高亚奎  在本刊中的所有文章
章卫国  在本刊中的所有文章

参考文献:
[1] Paek S K, Lee I. Flutter Analysis for Control Surface of Launch Vehicle with Dynamic Stiffness[J]. Computers and Structures 1996, 60(4): 593-599
[2] 杨炳洲,宋伟力. 舵模型风洞颤振试验中亚临界技术的应用研究[J]. 上海航天, 2003(2): 18-21 Yang Bingzhou, Song Weili. The Application of Sub-Critical Technology in Wind-Tunnel Flutter Experiment for Rudder Model[J]. Aerospace Shanghai, 2003(2): 18-21 (in Chinese)
[3] Lee I, Kim S H. Aeroelastic Analysis of a Flexible Control Surface with Structural Nonlinearity[J]. Journal of Aircraft, 1995, 32(4): 868-874
[4] Lee D H, Chen P C. Nonlinear Aeroelastic Studies on a Folding Wing Configuration with Free-Play Hinge Non-Linearity[R]. AIAA-2006-1734
[5] Shin W H, Lee I. Nonlinear Aeroelastic Analysis for a Control fin with an Actuator[J]. Journal of Aircraft 2007, 44(2): 597-605
[6] Yang N, Wu Z, Yang C. Structural Nonlinear Flutter Characteristics Analysis for an Actuator-Fin System with Dynamic Stiffness[J]. Chinese Journal of Aeronautics, 2011, 24(5): 590-599
[7] 王文亮.结构振动与动态子结构方法[M].上海:复旦大学出版社,1985:229-233 Wang Wenliang.Vibration and Substructure Methodology[M].ShangHai: Fudan University Press,1985:229-233 (in Chinese)
[8] Albano E, Rodden W P. A Doublet-Lattice Method for Calculating Lift Distributions on Oscillating Surfaces in Subsonic Flows[J]. AIAA Journal, 1969, 7(2): 279-285
[9] Kapel M.Time-Domain Aeroservoelastic Modeling Using Weighted Unsteady Aerodynamic Forces[J].Journal of Guidance,Control and Dynamics,1990,13( 1) :30-37
[10] 张新榃,吴志刚,杨超. 考虑舵机动力学的舵系统颤振特性分析[J]. 北京航空航天大学学报,2011,32(8):927-932 Zhang Xintan, Wu Zhigang, Yang Chao. Flutter Analysis for Rudder Considering Actuator's Dynamics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 32(8): 927-932 (in Chinese)