论文:2015,Vol:33,Issue(3):353-360
引用本文:
张乐, 周洲, 许晓平, 王红波. 飞翼无人机保形进排气系统动力数值模拟与流场特性分析[J]. 西北工业大学学报
Zhang Le, Zhou Zhou, Xu Xiaoping, Wang Hongbo. Numerical Simulation of Power and Flow Field Characteristics of Conformal Intake and Exhaust for Flying Wing Unmanned Aerial Vehicle[J]. Northwestern polytechnical university

飞翼无人机保形进排气系统动力数值模拟与流场特性分析
张乐, 周洲, 许晓平, 王红波
西北工业大学 无人机特种技术国防科技重点实验室, 陕西 西安 710065
摘要:
利用计算流体力学(CFD)方法,分别针对保形进气道和膨胀尾喷管风洞试验模型进行数值模拟,验证了模拟进排气动力边界条件的可靠性。再基于飞翼布局无人机双发动机布局下隐身与保形设计要求,设计了矩形进气口S弯进气道和圆矩形喷口尾喷管,并利用数值模拟方法对无人机进排气系统进行了计算分析,获得了无人机全机气动性能及进排气三维流场特性。研究表明:①进排气使得飞翼无人机升阻特性有所下降,但低马赫数(0.5,0.6)下能改善无人机俯仰力矩特性;②随着马赫数增加,进气道总压恢复系数减小且畸变指数增加,而尾喷管轴向推力系数则升高,且推力性能保持较好;高马赫数(0.7)下进气道特性下降较快,设计时应多考虑飞行包线右边界;③侧滑角对于进气道性能影响较大,而尾喷管推力性能受侧滑角影响较小,设计时应多考虑进气道侧滑影响。
关键词:    飞翼无人机    保形进气道    膨胀尾喷管    进排气    总压恢复系数    畸变指数    轴向推力系数    流场特性    数值模拟   
Numerical Simulation of Power and Flow Field Characteristics of Conformal Intake and Exhaust for Flying Wing Unmanned Aerial Vehicle
Zhang Le, Zhou Zhou, Xu Xiaoping, Wang Hongbo
National Key Laboratory of Science and Technology on UAV, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Using computational fluid dynamics (CFD) method, we performed numerical simulations on the wind tunnel test model of conformal inlet and expansion nozzle; they were aimed at verifying the reliability of the boundary conditions on power simulation. Keeping in mind the stealth and conformal requirements of twin-engine flying wing UAV, we designed a S-shaped inlet with rectangular intake and a circular-rectangle nozzle. And then numerical simulation was carried out on the intake and exhaust system, and it was also applied to studying the aerodynamic performance of UAV and three-dimensional flow field characteristics of the intake and exhaust. Results and their analysis indicate:(1)the lift/drag characteristic of flying wing UAV declines when adopting the intake and exhaust, but it can be used to improve the longitudinal moment characteristic under the low Mach number 0.5 and 0.6;(2)with increasing Mach number, the total pressure recovery coefficient decreases and the distortion coefficient increases, while the axial thrust coefficient increases and the thrust performance remains relatively satisfactory; the inlet performance decreases rapidly at the high Mach number 0.7;so we should pay more attention to the right border of the flight envelope in the design;(3)the sideslip angle exerts greater influence on the inlet performance, while the thrust performance of nozzle is less affected;so we also should pay more attention to the impact of sideslip angle on inlet.
Key words:    angle of attack    boundary conditions    computational fluid dynamics    computer simulation    design    exhaust systems    experiments    flight envelopes    flow fields    flow rate    inlet flow    intake systems    lift drag ratio    Mach number    mathematical models    mesh generation    Navier Stokes equations    nozzles    pressure distribution    reliability    schematic diagrams    stealth technology    three dimensional    turbulence models    unmanned aerial vehicles(UAV)    axial thrust coefficient    conformal inlet    distortion coefficient    expansion nozzle    flow field characteristics    flying wing UAV    total pressure recovery coefficient   
收稿日期: 2014-10-28     修回日期:
DOI:
基金项目: 国家自然科学基金(11302178)与航空科学基金(2013ZA53002)资助
通讯作者:     Email:
作者简介: 张乐(1988—),西北工业大学博士研究生,主要从事飞行器总体设计、气动隐身一体化研究。
相关功能
PDF(4062KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张乐  在本刊中的所有文章
周洲  在本刊中的所有文章
许晓平  在本刊中的所有文章
王红波  在本刊中的所有文章

参考文献:
[1] 郝卫东. 高速风洞发动机进排气气动模拟试验技术[J]. 北京航空航天大学学报,2005,31(4):459-463 Hao Weidong. Simulated Test Technique for Engine Air Intake and Exhaust in High Speed Wind Tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(4): 459-463 (in Chinese)
[2] 郁新华,陶于金,张琳. 飞翼布局无人机进排气效应风洞试验研究[J]. 空气动力学报,2013,31(4):494-497 Yu Xinhua, Tao Yujin, Zhang Lin. Wind Tunnel Experimental Research on Effect of Air Intake and Exhaust on the Aerodynamic Performance of Flying Wing UAV[J]. Acta Aerodynamic Sinica,2013,31(4):494-497 (in Chinese)
[3] 郁新华,陶于金,师小娟.进排气效应对飞翼布局无人机气动特性的影响[J]. 飞行力学,2011,29(5):18-21 Yu Xinhua, Tao Yujin, Shi Xiaojuan. Effect of Engine Air Intake and Exhaust on the Aerodynamic Performance of the UAV[J]. Flight Dynamics, 2011,29(5):18-21 (in Chinese)
[4] Michael Atkinson. A Computational Fluid Dynamics Investigation of the 1303 UCAV Configuration with Deployable Road Vortex Flaps[R]. AIAA-2006-0126
[5] Kim Hyoungjin, Liou Mengsing. Flow Simulation of N2B Hybrid Wing Body Configuration[R]. AIAA-2012-0838
[6] 谭兆光,陈迎春. 机体/动力装置一体化分析中的动力影响效应数值模拟[J]. 航空动力学报,2009,8(8):1766-1772 Tan Zhaoguang, Chen Yingchun. Numerical Simulation Method for the Powered Effects in Airframe/Propulsion Integration Analysis[J]. Journal of Aerospace Power, 2009,8(8):1766-1772 (in Chinese)
[7] Collie W V, Burgun R, Heinzen S N, et al. Advanced Propulsion System Design and Integration for a Turbojet Powered Unmanned Aerial Vehicle[R]. AIAA-2003-415
[8] Marlene Johansson. Propulsion Integration in an UAV[R]. AIAA-2006-2834
[9] Lee B J, Kim C. Automated Design Methodology of Turbulent Internal Flow Using Discrete Adjoint Formulation[J]. Aerospace Science and Technology, 2007, 11(2): 163-173
[10] Lee C C. Subsonic Diffuser Design and Performance for Advanced Fighter Aircraft[R]. AIAA-1985-3073
[11] 谭杰,金捷,杜刚,等. 过膨胀单边膨胀喷管试验和数值模拟[J]. 推进技术,2009,30(3):292-296 Tan Jie, Jin Jie, Du Gang, et al. Experimental and Computational Investigation of a Over-Expanded Single-Expansion-Ramp-Nozzle[J]. Journal of Propulsion Technology, 2009,30(3):292-296 (in Chinese)
[12] 张乐,周洲,李盈盈,等. 飞翼无人机保形非对称尾喷管设计及流场特性[J]. 西北工业大学学报,2014,32(5):667-674 Zhang Le, Zhou Zhou, Li Yingying, et al. Conformal Asymmetry Nozzle Design and Flow Field Characteristics of Flying Wing Unmanned Aerial Vehicle[J]. Journal of Northwestern Polytechnical University,2014,32(5):667-674 (in Chinese)
相关文献:
1.张乐, 周洲, 李盈盈, 甘文彪, 许晓平.飞翼无人机保形非对称尾喷管设计与流场特性[J]. 西北工业大学学报,