论文:2015,Vol:33,Issue(4):596-602
引用本文:
李静, 张伟伟, 李新涛. 失稳初期的低雷诺数圆柱绕流POD-Galerkin建模方法研究[J]. 西北工业大学学报
Li Jing, Zhang Weiwei, Li Xintao. Researching Method of Building Flow Field of Initial Development Stage of Low Reynolds Number Flow past a Circular Cylinder[J]. Northwestern polytechnical university

失稳初期的低雷诺数圆柱绕流POD-Galerkin建模方法研究
李静, 张伟伟, 李新涛
西北工业大学 航空学院, 陕西 西安 710072
摘要:
POD-Galerkin方法是构建非定常流动低阶模型的有效方法。然而,研究表明基于周期振荡样本及其时均解构建的低阶模型只能反演流场振荡饱和后的周期性运动,不能复现流动从不稳定定常解开始振荡的发散过程,不便于流动的稳定性分析和控制研究。通过尝试选择流场进入周期性运动之前的样本来构建低阶的流体动力学模型,并用于反演流动失稳初期微幅振荡的流场。以低雷诺数(Re=100)下圆柱绕流为例,构建了卡门涡街失稳初期的流动降阶模型。通过与CFD数值结果对比,表明选择合适的样本数据,构建的低阶模型可以复现流场发散初期的频率和阻尼等特性。
关键词:    特征正交分解    Galerkin投影    圆柱绕流    卡门涡街    非周期运动   
Researching Method of Building Flow Field of Initial Development Stage of Low Reynolds Number Flow past a Circular Cylinder
Li Jing, Zhang Weiwei, Li Xintao
College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
POD-Galerkin method is an effective way to build low-dimensional models for unsteady flows. However, studies have shown that low-dimensional models, based on snapshots of periodic oscillations and the time averaged solutions, can only rebuild the flow field of saturated periodic oscillating state, but iftcannot rebuild the divergence process of the flow from unstable steady solution to final unsteady saturated oscillation state. So it is inconvenient for stability analysis of the flow and for the controller design in future research. In this paper, we attempt to found low-dimensional dynamics modelsby using the snapshots of the fluid before entering the cyclical movement. And then we use this model to rebuild the flow field of the initial development stage with small oscillating amplitude.We take the flow past a circular cylinder at a low Reynolds number of 100 as an example to build a low-dimensional model for the initial instable stage of Karman vortex street. It is shown that, by choosing appropriate snapshots, the reduced-order model can rebuild some characteristics of the initial divergence regime of the flow, such as frequency and damping characteristics. This study, we believe, establishes a good foundation for the fluid-structure coupling analysis and flow instability control in future research.
Key words:    computational fluid dynamics    controllers    design    drag coefficient    eigenvalues and eigenfunctions    efficiency    finite volume method    flow fields    fluid structure interaction    Galerkin methods    mathematical models    matrix algebra    mean square error    Navier Stokes equations    pressure distribution    Reynolds number    Runge Kutta methods    stability    unsteady flow    velocity distribution    aperiodic movement    circular cylinder flow    Galerkin projection    Karman vortex street    POD(proper orthogonal decomposition)   
收稿日期: 2015-03-24     修回日期:
DOI:
基金项目: 2013教育部"新世纪优秀人才支持计划"及国家自然科学基金(11172237)资助
通讯作者:     Email:
作者简介: 李静(1990—),女,西北工业大学硕士研究生,主要从事流场降阶和建模研究。
相关功能
PDF(1805KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李静  在本刊中的所有文章
张伟伟  在本刊中的所有文章
李新涛  在本刊中的所有文章

参考文献:
[1] Lumley J L. The Structure of Inhomogeneous Turbulent Flows[C]//Atmospheric Turbulence and Radio Wave Propagation, Wauka, Moscow, 1967: 166-178
[2] Sirovich L. Turbulence and the Dynamics of Coherent Structures: Part Ⅰ~Ⅲ[J]. Quarterly of Applied Mathematics, 1987, 45: 561-571
[3] Deane A E, Kevrekidis I G, Karniadakis G E, et al. Low-Dimensional Models for Complex Geometry Flows: Application to Grooved Channels and Circular Cylinders[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(10): 2337-2354
[4] Cao N Z, Aubry N. Numerical Simulation of Wake Flow Via a Reduced System[C]//Proc ASME Fluids Engineering Conference, Washington DC,1993
[5] Tang K Y, Graham W R, Peraire J. Active Flow Control Using a Reduced Order Model and Optimum Control[C]//Proceedings of the 27th AIAA Fluid Dynamics Conference, 1996: 17-20
[6] Illongworth S, Morgans A, Rowley C. Feedback Control of Cavity Flow Oscillations Using Simple Linear Models[J]. Journal of Fluid Mechanics, 2012, 709: 223-248
[7] Barkley D. Linear Analysis of the Cylinder Wake Mean Flow[J]. Europhysics Letters, 2006, 75(5): 750-756
[8] Mittal S. Global Linear Stability Analysis of Time-Averaged Flows[J]. International Journal for Numerical Methods in Fluids, 2008, 58: 111-118
[9] Ma X, Karniadakis G E. A Low-Dimensional Model for Simulating Three-Dimensional Cylinder Flow[J]. Journal of Fluid Mechanics, 2002, 458: 181-190
[10] Akhtar I. Parallel Simulation, Reduced-Order Modeling, and Feedback Control of Vortex Shedding Using Fluidic Actuators[D]. Virginia Polytechnic Institute and State University, 2008
[11] Braza M, Chassaing P, Minh H H. Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder[J]. Journal of Fluid Mechanics, 1986, 165: 79-130
[12] Mittal S. Effect of a "Slip" Splitter Plate on Vortex Shedding from a Cylinder[J]. Physics of Fluids, 2003, 15(3): 817-820
[13] Tritton D J. Experiments on the Flow Past a Circular Cylinder at Low Reynolds Numbers[J]. Journal of Fluid Mechanics, 1959, 6(4): 547-567