论文:2015,Vol:33,Issue(4):588-595
引用本文:
许军, 马晓平. 飞翼无人机嗡鸣气动弹性响应分析[J]. 西北工业大学学报
Xu Jun, Ma Xiaoping. Buzz Aeroelastic Responses Analysis for a Flying Wing UAV[J]. Northwestern polytechnical university

飞翼无人机嗡鸣气动弹性响应分析
许军1, 马晓平2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 无人机所, 陕西 西安 710065
摘要:
提出一种嗡鸣响应分析的CFD/CSD耦合方法,并采用气动结构松耦合技术研究了无尾飞翼无人机的方向舵嗡鸣响应及其引起的副翼、升降舵及襟翼的振动时域响应特性。首先建立较为详细的无尾飞翼无人机结构模型和气动模型,基于雷诺平均的N-S方程建立流体控制方程和结构动力学方程的耦合求解技术;气动与结构耦合交界面精确匹配,并选取三维插值技术进行耦合界面结构变形位移与气动力载荷数据的传递;基于LU-SGS子迭代的时间推进技术和HLLEW的空间离散方法进行气动载荷的计算,湍流模型采用SST湍流模型;其中气动动网格变形技术采用非结构动网格,动网格更新技术采用弹簧近似光滑和局部网格重构组合方法。首先进行飞翼无人机气动弹性响应特性分析,验证松耦合技术的合理性并为方向舵偏转引起的嗡鸣响应分析提供参考;其次在方向舵嗡鸣响应分析时在方向舵转轴端部设置方向舵偏转运动的约束,基于提出的气动结构松耦合方法计算无尾飞翼无人机方向舵偏转引起的方向舵嗡鸣和全机的方向舵、副翼、升降舵及襟翼振动的时域响应;并研究了旋转角频率和飞行高度参数变化对飞翼无人机全机振动响应的影响。研究结果表明旋转角频率对方向舵的偏转响应和副翼、升降舵及襟翼的振动响应频率影响较大;而飞行高度对嗡鸣气弹响应频率并没有影响;且方向舵是振动位移和结构变形的危险区域,研究方法及内容可为飞翼无人机工程振动分析提供参考。
关键词:    飞翼无人机    嗡鸣    CFD/CSD    松耦合    方向舵    副翼    振动   
Buzz Aeroelastic Responses Analysis for a Flying Wing UAV
Xu Jun1, Ma Xiaoping2
1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. UAV Research Institute, Northwestern Polytechnical University, Xi'an 710065, China
Abstract:
Transonic rudder buzz responses and aileron, elevator, flap vibration time responses, which were based on the CFD/CSD buzz coupled method, were presented for a tailless flying wing UAV. The RANS N-S equations and finite element methods, based on the detailed aerodynamic and structural model, were established. The interfaces between the structural and aerodynamic model were built with an exact match surface where load transferring was performed based on 3D interpolation. The LU-SGS iteration and HLLEW space discrete methods based on the SST turbulence model were used to calculate the aerodynamic force, in which the aerodynamic dynamic meshes used the unstructured dynamic meshes based on the combination of the spring-based smoothing and local remeshing methods. The firstly calculated aeroelastic responses of the flying wing UAV could provide a reference for the buzz responses analysis. The constraints of the rudder motions were fixed at the end of the flying wing UAV structural model, and based on the presented buzz aerodynamic structural coupling method, the flying wing UAV buzz responses and aileron, elevator, flap vibration time responses induced by the rudder motion were studied; the effects of rotating angular frequencies and heights on the vibration time responses were also given. The research results showed that: (1)the rotating angular frequency had a big effect on the rudder buzz and aileron, elevator and flap vibration responses frequency, but the height did not affect the response frequency; (2)the flying wing UAV rudder had the dangerous structural deformations. The research method and conclusions could provide a reference for the flying wing UAV engineering vibration analysis.
Key words:    acceleration    aeroelasticity    ailerons    calculations    computational fluid dynamics    errors    finite element method    geometry    iterative methods    Mach number    matrix algebra    Navier Stokes equations    Reynolds number    rudders    schematic diagrams    structural dynamics    three dimensional    turbulence models    unmanned aerial vehicles(UAV)    velocity    vibration analysis    vibrations(mechanical)    buzz    CFD/CSD    flying wing UAV    loose coupling   
收稿日期: 2015-03-10     修回日期:
DOI:
基金项目: 国家自然科学基金(61074199)及陕西省自然科学基金(2013JM015)资助
通讯作者:     Email:
作者简介: 许军(1987—),西北工业大学博士研究生,主要从事无人机气动弹性研究。
相关功能
PDF(3974KB) Free
打印本文
把本文推荐给朋友
作者相关文章
许军  在本刊中的所有文章
马晓平  在本刊中的所有文章

参考文献:
[1] Dowell Earl, Edwards John, Strganac Thomas. Nonlinear Aeroelasticity[J]. Journal of Aircraft, 2003, 40(5): 857-874
[2] Pak Changi, Baker Myles L. Control Surface Buzz Analysis of a Generic NASP Wing[R]. AIAA-2001-1581
[3] Parker Ellen C, Spain Charles V, Soistmann David L. Aileron Buzz Investigated on Several Generic NASP Wing Configurations[R]. AIAA-1991-0936
[4] David Nixon. An Analytic Model for Control Surface Buzz[R]. AIAA-1998-0417
[5] Fuglsang D F, Brase L O, Agraswal S. A Numerical Study of Control Surface Buzz Using Computational Fluid Dynamic Methods[R]. AIAA-1992-2654
[6] Oddvar O B. Nonclassical Aileron Buzz in Transonic Flow[R]. AIAA-1993-1479
[7] Su S J, Chen P C. Equivalent Strip Method of Transonic Flaperon Buzz[R]. AIAA-1996-0166
[8] 刘千刚, 代捷, 白俊强. 跨音速操纵面嗡鸣Hopf分叉分析及结构参数对嗡鸣特性影响的研究[J]. 航空学报, 1999, 20(6): 527-532 Liu Qiangang, Dai Jie, Bai Junqiang. Hopf-Bifurcation Analysis of Transonic Control Surface Buzz and Investigation of the Influence of Structural Parameters on Buzz Characteristics[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(6): 527-532 (in Chinese)
[9] 史爱明, 杨永年, 叶正寅. 跨音速单自由度非线性颤振-嗡鸣的数值分析[J]. 西北工业大学学报, 2004, 22(4): 525-528 Shi Aiming, Yang Yongnian, Ye Zhengyin. Investigation of Control Surface Buzz in Transonic Flow[J]. Journal of Northwestern Polytechnical University, 2004, 22(4): 525-528 (in Chinese)
[10] 张伟伟, 叶正寅, 史爱明,等. 基于Euler方程的B型和C型嗡鸣特性数值研究[J]. 振动工程学报, 2005, 18(4): 458-464 Zhang Weiwei, Ye Zhengyin, Shi Aiming, et al. Numerical Analysis for B-Type Buzz and C-Type Buzz Based on Euler Codes[J]. Journal of Vibration Engineering, 2005, 18(4): 458-464 (in Chinese)
[11] Yang Guowei, Obayashi Shigeru. Aileron Buzz Simulation Using an Implicit Multiblock Aeroelastic Solver[J]. Journal of Aircraft, 2003, 40(3): 580-589
[12] 马艳峰, 贺尔铭, 曾宪昂,等. 基于流固耦合方法的大展弦比机翼非线性颤振特性分析[J]. 西北工业大学学报, 2014, 32(4): 536-541 Ma Yanfeng, He Erming, Zeng Xian'ang, et al. Studying Nonlinear Flutter of a High-Aspect-Ratio Wing Based on Fluid Solid Coupling[J]. Journal of Northwestern Polytechnical University, 2014, 32(4): 536-541 (in Chinese)