基于转捩模型的低雷诺数翼型优化设计研究 -- 西北工业大学学报,2015,33(4):580-587
论文:2015,Vol:33,Issue(4):580-587
引用本文:
王科雷, 祝小平, 周洲, 许晓平. 基于转捩模型的低雷诺数翼型优化设计研究[J]. 西北工业大学学报
Wang Kelei, Zhu Xiaoping, Zhou Zhou, Xu Xiaoping. Studying Optimization Design of Low Reynolds Number Airfoil Using Transition Model[J]. Northwestern polytechnical university

基于转捩模型的低雷诺数翼型优化设计研究
王科雷1,2, 祝小平2, 周洲1,2, 许晓平1,2
1. 西北工业大学 航空学院, 西安 710072;
2. 西北工业大学 无人机特种技术重点实验室, 西安 710065
摘要:
以微小型无人机翼型研究为背景,开展了低雷诺数翼型的气动特性及优化设计研究。首先采用求解雷诺平均N-S方程的有限体积法,对典型低雷诺数下NACA0012翼型标模进行数值模拟,对比分析了SA、SST k-ω湍流模型、低雷诺数修正SST k-ω模型以及k-kL-ω转捩模型的适用性和准确性。然后通过对低雷诺数下NACA0012翼型表面流场结构和流动特征的详细分析,提出了基于控制流动转捩位置改善翼型上边界层形态的低雷诺数翼型设计思想。最终基于转捩模型对SD7037翼型进行了多目标优化设计,设计结果表明优化后翼型气动性能得到了较大改善,最大升阻比可以提高约58.23%,在0°迎角下翼型上表面层流区域面积增大约26.8%,在4°迎角下翼型上表面流动转捩位置前移约0.15倍弦长,下游流动亦由优化前完全分离状态改变为实现流动再附,进一步验证了低雷诺数翼型设计思路的可靠性与可行性。
关键词:    微小型无人机    低雷诺数    转捩模型    边界层    流场结构    流动特征    多目标优化设计   
Studying Optimization Design of Low Reynolds Number Airfoil Using Transition Model
Wang Kelei1,2, Zhu Xiaoping2, Zhou Zhou1,2, Xu Xiaoping1,2
1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi'an 710065, China
Abstract:
Based on the research of the micro air vehicle (MAV), the aerodynamic performances and optimization design of the low Reynolds number airfoil were numerically simulated and studied. To verify the accuracy and reliability respectively of the SA, SST k-ω turbulence model, low Reynolds corrected SST k-ω model and k-kL-ω transition model, finite volume method was used to solve the 2D Reynolds-averaged Navier-Stokes equations for the numerical simulations of the fluid flow around NACA0012 in representative Reynolds numbers. Then the low Reynolds number flow characteristics of the fluid structures and flow mechanism around NACA0012 were studied. And at last an optimization mind for the low Reynolds number airfoil design was proposed, tested by a multi-objective optimization case of SD7037. The optimization results showed that 58.23% increment of lift to drag ratio, 26.8% increment of laminar flow area at α=0°, 0.15c forward movement of transition position and the reattachment downstream can be achieved; this can verify the reliability and feasibility of the optimization mind.
Key words:    airfoils    analysis of variance (ANOVA)    angle of attack    boundary layers    computational fluid dynamics    computer simulation    design    drag coefficient    finite volume method    flow fields    flow separation    flowcharting    laminar flow    liftdrag ratio    micro air vehicle (MAV)    multiobjective optimization    Navier-Stokes equations    optimization    pressure distribution    reliability    Reynolds number    turbulence models    two dimensional    flow characteristics    fluid structure    low Reynolds number    transition model   
收稿日期: 2015-03-10     修回日期:
DOI:
基金项目: 国家高技术(2013AA7052002)与国家自然科学基金(11302178)资助
通讯作者:     Email:
作者简介: 王科雷(1991—),西北工业大学博士研究生,主要从事飞行器总体设计及气动布局设计研究。
相关功能
PDF(2163KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王科雷  在本刊中的所有文章
祝小平  在本刊中的所有文章
周洲  在本刊中的所有文章
许晓平  在本刊中的所有文章

参考文献:
[1] Steven A. Palm-Size Spy Plane[J]. Mechanical Engineering, 1998, 11(3): 74-78
[2] 李锋, 白鹏, 石文, 李建华. 微型飞行器低雷诺数空气动力学[J]. 力学进展, 2007, 37(2): 257-268 Li Feng, Bai Peng, Shi Wen, Li Jianhua. Low Reynolds Number Aerodynamics of Micro Air Vehicles[J]. Advances in Mechanics, 2007, 37(2): 257-268 (in Chinese)
[3] Horton H P. Laminar Separation Bubbles in Two- and Three-Dimensional Incompressible Flow[D]. London: University of London, 1968
[4] Windte Jan, Scholz Ulrich, Radespiel Rolf. Validation of the RANS——Simulation of Laminar Separation Bubbles on Airfoils [J]. Aerospace Science and Technology, 2006, 10: 484-494
[5] 王科雷, 周洲, 甘文彪, 等. 太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2014, 32(2): 163-168 Wang Kelei, Zhou Zhou, Gan Wenbiao, et.al. Studying Aerodynamic Performance of the Low-Reynolds-Number Airfoil of Solar Energy UAV [J]. Journal of Northwestern Polytechnical University, 2014, 32(2): 163-168 (in Chinese)
[6] Rumsey C L, Spalart P R. Tirbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flow Fields [J]. AIAA Journal, 2009, 47(4): 982-993
[7] 符松, 王亮. 湍流转捩模式研究进展[J]. 力学进展, 2007, 37(3): 409-416 Fu Song, Wang Liang. Progress in Turbulence/Transition Modelling [J]. Advances in Mechanics, 2007, 37(3): 409-416 (in Chinese)
[8] Spalart P R, Allmaras S R. A One-Equation Turbulence Model for Aerodynamic Flows [R]. AIAA-1992-0439
[9] 周宇. 工程湍流模型参数辨识研究[D]. 绵阳: 中国空气动力研究与发展中心研究生部, 2009 Zhou Yu. The Study of Parameter Estimation for Turbulence Model [D]. Mianyang: China Aerodynamics Research and Development Center Graduate School, 2009 (in Chinese)
[10] Patel V C, Rodi W, Scheuerer G. Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review [J]. AIAA J, 1985, 23(9): 1308-1319
[11] Walters D K, Cokljat D. A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flows [J]. Journal of Fluids Engineering, 2008, 130(1): 1-14
[12] Joshua N.N., Counsil, Kiari, Gouni, Boulama. Low-Reynolds-Number Aerodynamic Performances of the NACA 0012 and Selig-Donovan 7003 Airfoils [J]. Journal of Aircraft, 2013, 50(1): 204-216
[13] Shan H, Li J, Liu C. Direct Numerical Simulation of Flow Separation Around a NACA0012 Airfoil[J]. Computers and Fluids, 2005, 34(9): 1096-1114
[14] Jones L E. Numerical Studies of the Flow around an Airfoil at Low Reynolds Number[D]. Southamplon, University of Southampton, 2008
[15] Kim D H, Yang J H, Chang J W, et al. Boundary Layer and Near-Wake Measurements of NACA0012 Airfoil at Low Reynolds Numbers[R]. AIAA-2009-1472
[16] Kim D H, Chang J W, Chung J. Low-Reynolds-Number Effect on Aerodynamic Characteristics of a NACA0012 Airfoil[J]. Journal of Aircraft, 2011, 48(4): 1212-1215
[17] Bradshaw P. Turbulence: the Chief Outstanding Difficulty of Our Subject [J]. Exp Fluids, 1994, 16: 203-216
[18] Walters D K, Leylek J H. Impact of Film-Cooling Jets on Turbine Aerodynamic Losses [J]. ASME J Turbomach, 2000, 122: 537-545
[19] Volino R J. A New Model for Free-Stream Turbulence Effects on Boundary Layers[J]. ASME J Turbomach, 1998, 120: 613-620
[20] Hager J O, Eyi S, Leek D. Multi-Point Design of Transonic Airfoils Using Optimization [R]. AIAA-1992-4225
[21] 穆雪峰, 姚卫星. 多学科设计优化中常用代理模型的研究 [J]. 计算力学学报, 2005, 22(5): 608-612 Mu Xuefeng, Yao Weixing. A Survey of Surrogate Models Used in MDO[J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 608-612 (in Chinese)
[22] 崔逊学. 多目标进化算法及其应用[M]. 北京:国防工业出版社, 2006 Cui Xunxue. Multi-Objective Evolutionary Algorithms and Their Applications[M]. Beijing: National Defense Industry Press, 2006 (in Chinese)