论文:2015,Vol:33,Issue(4):573-579
引用本文:
王睿, 祝小平, 周洲. 超柔性太阳能无人机纵向操稳特性研究[J]. 西北工业大学学报
Wang Rui, Zhu Xiaoping, Zhou Zhou. Longitudinal Stability and Control of Highly Flexible Solar-Powered UAV[J]. Northwestern polytechnical university

超柔性太阳能无人机纵向操稳特性研究
王睿1, 祝小平2, 周洲1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 无人机特种技术重点实验室, 陕西 西安 710065
摘要:
针对高空长航时太阳能无人机的超柔性机翼气动弹性变形明显,与飞行动力学响应耦合,常规分析方法会引起较大误差的特点。本文首先采用拉格朗日方程建立了能够反映超柔性特性的结构/飞行耦合动力学模型;然后结合气动弹性引起的结构变形、全机构型变化和气动导数变化,采用根轨迹法深入分析超柔性太阳能无人机的纵向稳定性;最后研究了气动弹性变形对纵向飞行控制律的影响规律,提出了改进方案并进行了仿真验证。发现超柔性太阳能无人机的纵向特征根随机翼刚度变化很明显,尤其当刚度较小时将会出现短周期和一弯模态耦合、长周期不稳定等不利现象;采用刚性或静气动弹性模型设计得到的控制律增益偏小,同时控制机翼变形和飞行姿态可以得到更平滑的控制效果。
关键词:    超柔性无人机    气动弹性    耦合    稳定性    机翼变形抑制   
Longitudinal Stability and Control of Highly Flexible Solar-Powered UAV
Wang Rui1, Zhu Xiaoping2, Zhou Zhou1
1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Science and Technology of UAV Laboratory, Northwestern Polytechnical University, Xi'an 710065, China
Abstract:
The structure of the wing of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) is highly flexible. The aeroelasticity and flight dynamics are highly coupled. This influences the flight safety seriously. In the stage of conceptual design, it is necessary to research the characteristics of flight dynamics and control thoroughly for highly flexible wing. In this paper, the Lagrangian method is employed to model the motion of rigid-wing UAV, the same configuration with static aeroelastic deformation and highly flexible-wing UAV. The longitudinal characteristics of flight dynamics and control are compared and it is found that, while considering the static deformation only, owing to the becoming large of the pitch moment of inertia, the stability derivatives of the pitch axis are reduced and the damp and frequency of short period mode are obviously reduced. The frequency of phugoid changes little but the damping of it is also obviously reduced. It can be found that the longitudinal characteristic roots changed as wing stiffness varies. Particularly, when the stiffness is very small, the short period mode and the first bend mode are coupled and the phugoid is unstable. The pitch rate and the pitch angle feedback gains are smaller than flexible model. Therefore, relatively great adjustment should be made to fulfill the requirement of aeroelastic UAVs. To better reduce the disturbance of angle of attack and normal acceleration, the elevon should be employed to suppress the deformation of wing.
Key words:    aeroelasticity    angle of attack    angular velocity    computer software    conceptual design    damping    degrees of freedom (mechanics)    eigenvalues and eigenfuctions    feedback    flexible wings    flight dynamics    longitudinal control    matrix algebra    modal analysis    rigid wings    solar energy    stability    stiffness    unmanned aerial vehicles (UAV)    coupled    highly flexible UAV    suppression of wing deformation   
收稿日期: 2014-10-28     修回日期:
DOI:
基金项目: 国家自然科学基金(11202162)与陕西省科技统筹创新工程计划项目(2015KTCQ01-78)资助
通讯作者:     Email:
作者简介: 王睿(1981—),西北工业大学讲师,主要从事飞行器总体设计、飞行动力学与控制研究。
相关功能
PDF(1133KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王睿  在本刊中的所有文章
祝小平  在本刊中的所有文章
周洲  在本刊中的所有文章

参考文献:
[1] Rafael Palacios, Carlos E S Cesnik. Structural Models for Flight Dynamic Analysis of Very Flexible Aircraft[R]. AIAA-2009-2403
[2] Brijesh Raghavan, Mayuresh Patil. Flight Dynamics of High Aspect-Ratio Flying Wings: Effect of Large Trim Deformation[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head, SC, 2007
[3] Kevin M Roughen, Oddvar O Bendiksen, Myles L Baker. Development of Generalized Aeroservoelastic Reduced Order Models[R]. AIAA-2009-2491
[4] Woehrle T G, Costerus B W, Lee C L. Modal Analysis of PATHFINDER Unmanned Air Vehicle[C]//IMAC-XIII Conference, 1995
[5] 谢长川, 吴志刚, 杨超. 大展弦比柔性机翼的气动弹性分析[J]. 北京航空航天大学学报2003, 29(12):1087-1090 Xie Changchuan, Wu Zhigang, Yang Chao. Aeroelastic Analysis of Flexible Large Aspect Ratio Wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12): 1087-1090 (in Chinese)
[6] Mayuresh J Patil, Dewey H Hodges. Flight Dynamics of Highly Flexible Flying Wings[J]. Journal of Aircraft, 2006, 43(6): 1790-1798
[7] Su Weihua. Coupled Nonlinear Aeroelasticity and Flight Dynamics of Fully Flexible Aircraft[D]. University of Michigan, 2008
[8] Cesnik Carlos E S, Su Weihua. Nonlinear Aeroelastic Modeling and Analysis of Fully Flexible Aircraft[R]. AIAA-2005-2169
[9] Azoulay D, Karpel M. Characterization of Methods for Computation of Aeroservoelastic Response to Gust Excitation[R]. AIAA-2006-1938
[10] Brijesh Raghavan, Mayuresh Patil. Flight Dynamics of High Aspect-Ratio Flying Wings[R]. AIAA-2006-6135
[11] 王尚文, 余旭东, 赵育善. 飞行器结构动力学[M]. 西安: 西北工业大学出版社, 1998 Wang Shangwen, Yu Xudong, Zhao Yushan. Structural Dynamics of Aircraft[M]. Xi'an: Northwestern Polytechnical University Press, 1990 (in Chinese)
[12] 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础[M]. 北京: 北京航空航天大学出版社, 2004 Chen Guibin, Zou Congqing, Yang Chao. Foundational of Design of Aeroelastic[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2004 (in Chinese)
[13] 何植岱, 高浩. 高等飞行动力学[M]. 西安: 西北工业大学出版社, 1990 He Zhidai, Gao Hao. Advanced Flight Dynamics[M]. Xi'an: Northwestern Polytechnical University Press, 1990 (in Chinese)
相关文献:
1.康伟, 代向艳, 刘凝.低速翼型绕流的多模态耦合与流动稳定性研究[J]. 西北工业大学学报, 2015,33(3): 382-387
2.陈浩, 徐敏, 谢亮, 康伟.保形动网格策略在CFD/CSD耦合中的应用[J]. 西北工业大学学报, 2015,33(5): 732-738
3.王伟, 周洲, 祝小平, 王睿.考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J]. 西北工业大学学报, 2014,32(4): 499-504
4.李满, 宋笔锋, 焦景山, 胡铁玉.基于柔性梁模型的大展弦比无人机动力学建模与分析[J]. 西北工业大学学报, 2013,31(6): 858-864