论文:2015,Vol:33,Issue(4):566-572
引用本文:
王伟, 周洲, 祝小平, 段静波, 张驰. 基于CR理论的大柔性太阳能无人机非线性配平及飞行载荷分析[J]. 西北工业大学学报
Wang Wei, Zhou Zhou, Zhu Xiaoping, Duan Jingbo, Zhang Chi. CR Approach of Nonlinear Trim and Flight Load Analysis of Very Flexible Solar Powered UAV[J]. Northwestern polytechnical university

基于CR理论的大柔性太阳能无人机非线性配平及飞行载荷分析
王伟1,2, 周洲1,2, 祝小平2, 段静波1,2,3, 张驰1,2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 无人机特种技术重点实验室, 陕西 西安 710065;
3. 军械工程学院 无人机工程系, 河北 石家庄 050003
摘要:
大柔性太阳能无人机在气动载荷的作用下产生较大的弹性变形,基于刚性或线弹性假设的结构模型已然不能满足这类飞机配平与飞行载荷分析的精度要求。基于co-rotational(CR)理论建立了大柔性飞机结构模型,并耦合片条气动力模型,提出了一种可以考虑几何非线性效应的大柔性飞机非线性配平及飞行载荷分析的方法。以类"太阳神"布局太阳能无人机为例,采用该方法对其不同有效载荷下的纵向配平及飞行载荷特性进行了较为深入的研究。研究结果表明:有效载荷较大时,采用线弹性假设的结构模型解得的配平误差可达50%以上,对翼尖位移的预测误差可达25%以上;该方法能够较合理地预测大柔性无人机的配平及飞行载荷特性,满足大柔性太阳能无人机结构设计对飞行载荷分析的工程精度要求。
关键词:    几何非线性    CR理论    大柔性飞机    非线性配平    飞行载荷    太阳能无人机   
CR Approach of Nonlinear Trim and Flight Load Analysis of Very Flexible Solar Powered UAV
Wang Wei1,2, Zhou Zhou1,2, Zhu Xiaoping2, Duan Jingbo1,2,3, Zhang Chi1,2
1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi'an 710065, China;
3. Department of UAV, Ordance Engineering College, Shijiazhuang 050003, china
Abstract:
A very flexible solar powered UAV under aerodynamic load undergoes large deformation; thus it is impossible to obtain its precise nonlinear trimming and flight load characteristics with the structural models that have rigid or linear assumptions. Therefore, combining the co-rotational theory with the aerodynamic strip theory, we develop an analysis algorithm which can deal with the geometrically nonlinear trimming and flight load characteristics of the very flexible solar-powered UAV. Taking a UAV with the layout similar to Helios for example, we explore the nonlinear trimming and flight load characteristics of the UAV under different payloads. The exploration results, given in Fig.5 through 12, and their analysis show preliminarily that: when applying the linear structural model to a large payload region, the trimming error of the UAV reaches 50% and the forecast error of its wingtip displacement reaches 25%. Our analysis algorithm can forecast the reasonable results on the very flexible solar-powered UAV and satisfy the precision requirements for the very flexible solar-powered UAV design in engineering.
Key words:    algorithms    angle of attack    control nonlinearities    convergence of numerical methods    design    flow velocity    flowcharting    forecasting    FORTRAN (program language)    geometry    Jacobian matrices    mathematical models    matrix algebra    Newton-Raphson method    schematic diagrams    solar energy    stiffness matrix    unmanned aerial vehicles (UAV)    vectors    co-rotational theory    flight load    nonlinear trimming    very flexible solar-powered UAV   
收稿日期: 2015-03-17     修回日期:
DOI:
基金项目: 国家自然科学基金(11202162、11302178)与中国博士后基金(2014M560803)资助
通讯作者: 周洲(1966—),西北工业大学教授、博士生导师,主要从事无人机总体设计研究。     Email:
作者简介: 王伟(1988—),西北工业大学博士研究生,主要从事无人机总体、气动弹性学及飞行力学研究。
相关功能
PDF(1400KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王伟  在本刊中的所有文章
周洲  在本刊中的所有文章
祝小平  在本刊中的所有文章
段静波  在本刊中的所有文章
张驰  在本刊中的所有文章

参考文献:
[1] Kirk Flittie, Bob Curtin. Pathfinder Solar-Powered Aircraft Flight Performance[R]. AIAA-1998-4446
[2] 昌敏,周洲,郑志成. 太阳能飞机原理及总体参数敏度分析[J]. 西北工业大学学报, 2010, 28(5):792-796 Chang Min, Zhou Zhou, Zheng Zhicheng. Flight Principles of Solar-Powered Airplane and Sensitivity Analysis of Its Conceptual Parameters[J]. Journal of Northwestern Polytechnical University, 2010, 28(5):792-796 (in Chinese)
[3] 王伟,周洲,祝小平,王睿. 考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J]. 西北工业大学学报, 2014, 32(4):499-504 Wang Wei, Zhou Zhou, Zhu Xiaoping,Wang Rui. Static Aeroelastic Characteristics Analysis of a Very Flexible Solar Powered UAV with Geometrical Nonlinear Effect Considered[J]. Journal of Northwestern Polytechnical University, 2014, 32(4):499-504 (in Chinese)
[4] Patil M J, Hodges D H, Cesnik C E S. Nonlinear Aeroelasticity and Flight Dynamics of High-Altitude Long-Endurance Aircraft[R]. AIAA-1999-1470
[5] Patil M J, Hodges D H. Flight Dynamics of Highly Flexible Flying Wings[J]. Journal of Aircraft,2006,43(6):1790-1798
[6] Cesnik C E S, Su Weihua. Nonlinear Aeroelastic Modleing and Analysis of Fully Flexible Aircraft[R]. AIAA-2005-2169
[7] Su W, Cesnik C E S. Dynamic Response of Highly Flexible Flying Wings[J]. AIAA Journal,2011,19(2):324-339
[8] Rodden W P, Johnson E H. MSC/Nastran Aeroelastic Analysis User's Guide V68[M]. MSC Software Corporation, 1994
[9] Yang C, Wang L B, Xie C C, et al. Aeroelastic Trim and Flight Load Analysis of Flexible Aircraft with Large Deformations[J]. Sci China Tch Sci,2012,55:2700-2711
[10] 王伟,周洲,祝小平,王睿. 几何大变形太阳能无人机非线性气动弹性稳定性研究[J]. 西北工业大学学报, 2015, 33(1):1-8 Wang Wei, Zhou Zhou, Zhu Xiaoping,Wang Rui. Exploring Aeroelastic Stability of Very Flexible Solar Powered UAV with Geometrically Large Deformation[J]. Journal of Northwestern Polytechnical University, 2015, 33(1):1-8 (in Chinese)
[11] Crisfield MA, Galvanetto U, Jelenic' G. Dynamics of 3-D Co-Rotational Beams[J]. Computational Mechanics, 1997,20:507-519
[12] Le T N, Battini J M, Hjiaj M. Dynamics of 3D Beam Elements in a Corotational Context: A Comparative Study of Established and New Formulation[J]. Finite Elements in Analysis and Design,2012,61:97-111
相关文献:
1.王伟, 周洲, 祝小平, 王睿.考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J]. 西北工业大学学报, 2014,32(4): 499-504