论文:2015,Vol:33,Issue(4):560-565
引用本文:
龚志斌, 李杰, 蒋胜矩, 张恒. 发动机位置对大型运输机动力增升效能的影响研究[J]. 西北工业大学学报
Gong Zhibin, Li Jie, Jiang Shengju, Zhang Heng. Numerical Investigation of the Influence of Engine Positions on Powered High-Lift Effects for Large Transport Aircraft[J]. Northwestern polytechnical university

发动机位置对大型运输机动力增升效能的影响研究
龚志斌1, 李杰1, 蒋胜矩2, 张恒1
1. 西北工业大学航空学院, 陕西 西安 710072;
2. 中国兵器工业第203研究所, 陕西 西安 710065
摘要:
参照C-17运输机,建立了外吹式襟翼动力增升全机几何分析模型。采用多块结构化网格技术,基于RANS方法,分别对高升力构型和轴对称发动机动力喷流进行了数值模拟验证,在此基础上开展了发动机短舱位置和喷流方位对动力增升效能的影响研究并总结其设计原则。计算结果表明,短舱垂直位置对动力增升效能影响最为显著,发动机每下沉100 mm升力至少损失0.1。为获得理想的动力增升效果,发动机短舱应在避免巡航状态喷流直接冲刷机翼下表面的前提下尽可能地靠近机翼。发动机水平位置主要影响中等以上迎角的气动力特性,短舱前伸有利于喷流进入缝道并且存在兼顾最大升力系数和失速和缓特性的最佳前伸量。发动机负的安装角每增加1°,升力可增加0.1以上,适当给定负的发动机安装角可使得尾喷流向上倾斜从而被襟翼完全阻挡。通过改变发动机位置,在起到更好的动力增升效果的同时,通常都伴有低头力矩增大,压力中心后移,以至于全机安定性增加的同时平尾配平的负担也相应增加。
关键词:    外吹式襟翼    动力增升    多块结构化网格    雷诺平均N-S方法,发动机位置   
Numerical Investigation of the Influence of Engine Positions on Powered High-Lift Effects for Large Transport Aircraft
Gong Zhibin1, Li Jie1, Jiang Shengju2, Zhang Heng1
1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. No. 203 Research Institute of China Ordnance Industries, Xi'an 710065, China
Abstract:
Taking C-17 transport as reference, we construct powered high-lift transport configuration with externally blowing flap (EBF). Based upon multi-block structured grid techniques and RANS methods, numerical validations are carried out on a high-lift model as well as an axisymmetric fan-jet engine model. Then the influences of engine positions on powered high-lift efficiency are investigated and the design rules for engine positions are summarized. Results and their analysis show preliminarily that the vertical positions of the engines are the primary factors for high-lift. For every 100mm drop of nacelles, the lift coefficients will reduce more than 0.1. The nacelles should be installed as close as possible to the wing to obtain ideal high lift while making sure that the jet flow does not impinge directly on lower wing surfaces at high speed cruise conditions. The horizontal positions of the nacelles mainly affect the aerodynamics above medium flow angle. The jet flow can get through the flap slots more easily with the engines placed more forward and the optimum horizontal positions exit considering both the maximum lift and stall properties. The lift coefficients will increase above 0.1 for every 1 degree increase of the negative nacelle installation angle. Moderate negative engine installation angle contributes to the powered high-lift effects by making the jet flow deflect upward and be totally blocked by the flaps. When changing the engine positions for better high-lift effects, the pitching moment will always be larger, which means that the aerodynamic center will move backward and longitude trim and stability problems may be severer.
Key words:    aerodynamic stalling    aircraft engines    angle of attack    boundary conditions    computer simulation    control surfaces    design    efficiency    flow rate    geometry    installation    lift    Mach number    mathematical models    mesh generation    Navier Stokes equations    Reynolds number    stability    transport aircraft    turbulence models    VTOL/STOL aircraft    wings    engine positions    externally blowing flap(EBF)    multi-block structured grid    powered high-lift    RANS methods   
收稿日期: 2015-03-31     修回日期:
DOI:
基金项目: 国家自然科学基金(11172240)、航空科学基金(2014ZA53002)与国家重点基础研究发展计划(2015CB755800)资助
通讯作者:     Email:
作者简介: 龚志斌(1986—),西北工业大学博士研究生,主要从事理论与计算空气动力学研究。
相关功能
PDF(4148KB) Free
打印本文
把本文推荐给朋友
作者相关文章
龚志斌  在本刊中的所有文章
李杰  在本刊中的所有文章
蒋胜矩  在本刊中的所有文章
张恒  在本刊中的所有文章

参考文献:
[1] 戴思宗,董建鸿. 外吹式动力增升技术在大型运输机上的应用研究[J]. 航空科学技术, 2006, 17(2): 33-38 Dai Sizong, Dong Jianghong. A Study of Externally Blowning powered-Lift Technique for Application to Large Transport[J]. Aeronautical Science and Technology, 2006, 17(2): 33-38 (in Chinese)
[2] Slotnick J P, An M Y, Mysko S T, et al. Navier-Stokes Analysis of a High Wing Transport High-Lift Configuration with Externally Blown Flaps[R]. AIAA-2000-4219
[3] Griffin H A. Computational Fluid Dynamics Analysis of Externally Blown Flap Configuration for Transport Aircraft[J]. Journal of Aircraft, 2008, 45(1): 172-184
[4] 刘李涛,杨永,李喜乐. 外吹式动力吹气襟翼N-S方程数值分析[J]. 航空计算技术, 2008, 38(3):61-64 Liu Litao, Yang Yong, Li Xile. Numerical Analysis of High-Lift System with Externally Blown Flap Using N-S Equations[J]. Aeronautical Computing Technique, 2008, 38(3):61-64 (in Chinese)
[5] 郭少杰. 下吹式襟翼动力增升效能数值模拟分析研究[D]. 西安: 西北工业大学, 2010 Guo Shaojie. The Aerodynamic Performance Analysis and Design for High-Lift Configuation Aircraft [D]. Xi'an: Northwestern Polytechnical University, 2010 (in Chinese)
[6] 史经纬, 王占学, 刘增文,等. 涡扇发动机位置对外吹式增升效果影响的数值模拟[J]. 机械设计与制造, 2012(11): 43-45 Shi Jingwei, Wang Zhangxue, Liu Zengwen, et al. Numerical Simulation of Externally Blown Flap Effect with Different Turbofan Positions[J]. Machinery Design and Manufacture, 2012 (11): 43-45 (in Chinese)
[7] 谭兆光,陈迎春,李杰,等. 机体/动力装置一体化分析中的动力影响效应数值模拟[J]. 航空动力学报, 2009, 24(8):1766-1772 Tan Zhaoguang, Chen Yingchun, Li Jie, et al. Numeical Simulation Method for the Powered Effects in Airframe/Propulsion Intergration Analysis [J]. Journal of Aerospace Power, 2009, 24(8): 1766-1772 (in Chinese)