一种NLOS量测平滑算法在MAUVs协同定位中的应用 -- 西北工业大学学报,2015,33(5):854-859
论文:2015,Vol:33,Issue(5):854-859
引用本文:
马朋, 张福斌, 田冰, 徐德民. 一种NLOS量测平滑算法在MAUVs协同定位中的应用[J]. 西北工业大学学报
Ma Peng, Zhang Fubin, Tian Bing, Xu Demin. A NLOS Measurement Smoothing Algorithm for Cooperative Localization in Multiple Autonomous Underwater Vehicles[J]. Northwestern polytechnical university

一种NLOS量测平滑算法在MAUVs协同定位中的应用
马朋1, 张福斌1, 田冰2, 徐德民1
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 中国人民解放军69016部队, 新疆 乌鲁木齐 830001
摘要:
在基于双领航者的MAUVs协同定位过程中,为了减轻NLOS量测误差的影响,在假设NLOS修正偏差先验已知的前提下,以4状态Markov链描述了4种LOS/NLOS量测模型间相互独立转换过程,继而利用交互多模和Kalman滤波理论设计了一种AUVs间相对距离量测平滑算法,并将其距离量测估计结果应用于MAUVs协同定位系统中。仿真结果对比表明,该算法可以有效提高AUVs间的相对距离量测估计精度,获得了更好的协同定位性能。
关键词:    非视距量测    交互多模    多自主水下航行器    协同定位   
A NLOS Measurement Smoothing Algorithm for Cooperative Localization in Multiple Autonomous Underwater Vehicles
Ma Peng1, Zhang Fubin1, Tian Bing2, Xu Demin1
1. College of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. PLA Unit 69016, Urumqi 830001, China
Abstract:
In the process of MAUVs cooperative localization based on two leaders, in order to mitigate the influence of NLOS measurement deviation, a four state Markov chain is used to describe the switch process among four LOS/NLOS range measurement models which are independent of each other. Then we design a relative range measurement smoothing algorithm by combining the IMM and Kalman filter theory among AUVs, and the range measurement estimation results are applied to the MAUVs cooperative localization system. Simulation results and their analysis indicate preliminarily that the proposed algorithm does improve effectively the estimation accuracy of relative range measurement among AUVs. Moreover, the performance of the corresponding cooperative localization is also better than that of conventional method.
Key words:    algorithms    autonomous underwater vehicles    computer simulation    covariance matrix    design    efficiency    errors    estimation    Kalman filters    Markov processes    mathematical models    MATLAB    mean square error    measurement errors    measurements    probability    trajectories    cooperative localization    interacting multiple models    multiple AUVs (MAUVs)    non line of sight measurement   
收稿日期: 2015-03-04     修回日期:
DOI:
基金项目: 国家自然科学基金(61273333)资助
通讯作者:     Email:
作者简介: 马朋(1987—),西北工业大学博士研究生,主要从事水下协同导航研究。
相关功能
PDF(1743KB) Free
打印本文
把本文推荐给朋友
作者相关文章
马朋  在本刊中的所有文章
张福斌  在本刊中的所有文章
田冰  在本刊中的所有文章
徐德民  在本刊中的所有文章

参考文献:
[1] Willcox S, Goldberg D, Vaganay J, Curcio J. Multi-Vehicle Cooperative Navigation and Autonomy with Bluefin CADRE System[C]//International Federation of Automatic Control Conference(IFAC), 2006:1-6
[2] Diamant R, Tan H, Lampe L. LOS and NLOS Classification for Underwater Acoustic Localization[J]. IEEE Trans on Mobile Computing, 2014, 13(2):311-323
[3] Emokpae L, DiBenedetto S, Potteiger B, Younis M. UREAL:Underwater Reflection-Enabled Acoustic-Based Localization[J]. IEEE Sensors Journal, 2014, 14(11):3915-3925
[4] Yu K, Guo Y. Improved Positioning Algorithms for Nonline-of-Sight Environment[J]. IEEE Trans on Vehicular Technology, 2008, 57(4):2342-2353
[5] Nawaz S, Trigoni N. Convex Programming Based Robust Localization in NLOS Prone Cluttered Enviroments[C]//10th International Conference on Information Processing in Sensor Networks(IPSN), 2011:318-329
[6] Vaghefi R, Buehree R. Cooperative Sensor Localization with NLOS Mitigation Using Semidefinite Programming[C]//9th Workshop on Positioning Navigation and Communication (WPNC), 2012:13-18
[7] Yu K, Dutkiewicz E. NLOS Identification and Mitigation for Mobile Tracking[J]. IEEE Trans on Aerospace and Electronic Systems, 2013, 49(3):1438-1452
[8] Liao J, Chen B. Robust Mobile Location Estimator with NLOS Mitigation Using Interacting Multiple Model Algorithm[J]. IEEE Trans on Wireless Communications, 2006, 5(11):3002-3006