论文:2014,Vol:32,Issue(4):529-534
引用本文:
李亚智, 耿伟杰, 束一秀, 王启. 高载作用下的疲劳裂纹闭合与残余应力作用[J]. 西北工业大学
Li Yazhi, Geng Weijie, Shu Yixiu, Wang Qi. Fatigue Crack Closure and Residual Stress Effect of Overload[J]. Northwestern polytechnical university

高载作用下的疲劳裂纹闭合与残余应力作用
李亚智1, 耿伟杰1, 束一秀1, 王启2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 中航工业第一飞机设计研究院, 陕西 西安 710089
摘要:
工程结构经常受到变幅载荷的作用,施加的高载对结构中的疲劳裂纹扩展有明显影响,了解高载作用机理对于随机载荷谱下的裂纹扩展预测十分重要。基于塑性诱导裂纹闭合原理,运用弹塑性有限元法模拟疲劳裂纹扩展。阐述了所采用的裂纹扩展模拟方法及确定裂纹张开和闭合应力的原理,计算获得等K基本载荷循环下的裂纹闭合特性和残余应力分布规律。重点分析在基本循环中插入单个拉伸超载、单个压缩超载和单个拉伸超载后紧跟单个压缩超载等情况下裂纹的张开、闭合应力及残余应力分布随裂纹扩展的变化规律。结果表明,超载在裂尖前方和裂纹尾迹区引起的压缩残余应力是导致裂纹闭合应力水平升高和裂纹扩展迟滞的重要原因。裂纹闭合效应在拉伸超载后瞬时减弱,但会随着裂纹扩展快速上升至超过正常水平;单纯的压缩超载对裂纹闭合的削弱可以忽略不计,但紧跟在拉伸超载之后的压缩超载将导致裂纹闭合效应减弱,削弱拉伸超载下的裂纹扩展迟滞效应。
关键词:    疲劳裂纹扩展    有限元方法    计算机模拟    超载迟滞    裂纹闭合    塑性变形    残余应力   
Fatigue Crack Closure and Residual Stress Effect of Overload
Li Yazhi1, Geng Weijie1, Shu Yixiu1, Wang Qi2
1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. First Aircraft Design and Research Institute of AVIC, Xi'an 710089
Abstract:
Engineering structures are frequently subjected to the variable amplitude loads, which have a significant impact on the fatigue crack growth. In order to understand the relationship between the overload effect and the plas-ticity induced crack closure, we simulated fatigue crack propagation using elastic-plastic finite element method. The techniques of the simulation and the determination of crack opening/closing stresses are introduced. Crack growth induced residual stress distribution and the crack closure behavior are firstly obtained for the baseline loading which is the constant K (keeping the maximum stress intensity factor as constant and the stress ratio R as 0 during crack growth) cyclic loading. The values of the crack opening/closing stress levels relative to the maximum applied stress keep constant during the crack extension. Then similar results are obtained for different overload cases inserted into baseline cycles, such as a single tensile overload cycle, a single compressive overload cycle, or a single tensile o-verload followed by a compressive overload. The results demonstrate that the compressive residual stress induced by the tensile overload in front of crack tip and later in the wake of the crack causes the increase of crack closure level and the retardation of crack growth. The crack closure effect is weakened instantaneously after the tensile overload and enhanced rapidly along with the crack growth until a level much higher than that of the baseline cycles. The effect of a single compression overload itself on crack closure should be overlooked, but the beneficial effect of a tensile overload can be attenuated by a compressive overload immediately after it by reducing the crack opening/closing levels.
Key words:    fatigue crack propagation    finite element method    computer simulation    overload retardation    crack closure    plastic deformation    residual stresses   
收稿日期: 2013-10-28     修回日期:
DOI:
通讯作者:     Email:
作者简介: 李亚智(1962-),西北工业大学教授、博士,主要从事断裂力学、复合材料力学、飞机结构完整性的研究。
相关功能
PDF(377KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李亚智  在本刊中的所有文章
耿伟杰  在本刊中的所有文章
束一秀  在本刊中的所有文章
王启  在本刊中的所有文章

参考文献:
[1] Kermanidis A T, Pantelakis S G. Prediction of Fatigue Crack Growth under Constant Amplitude Loading and a Single Overload Based on Elasto-Plastic Crack Tip Stresses and Strains[J]. Engineering Fracture Machanics, 2011, 78: 2325-2337
[2] Lee S Y. A Study on Fatigue Crack Growth Behavior Subjected to a Single Tensile Overload Part I: An Overload-Induced Transient Crack Growth Micromechanism[J]. Acta Materialia, 2011, 59: 485-494
[3] Lee J Moo, Byoungho C. Experimental Observation and Modelling of the Retardation of Fatigue Crack Propagation under the Combination of Mixed-Mode Single Overload and Constant Amplitude Loads[J]. International Journal of Fatigue, 2009, 31:1848-1857
[4] Bichler Ch, Pippan R. Effect of Single Overloads in Ductile Metals: A Reconsideration[J]. Engineering Fracture Mechanics,2007, 74: 1344-1359
[5] Celik C E. Comparison of Retardation Behaviour of 2024-T3 and 7075-T6 AL Alloys[J]. Fatigue Fract Engng Mater Struct,2004, 27: 713-722
[6] McEvily A J. On the Number of Overload-Induced Delay Cycles as a Function of Thickness[J]. International Journal of Fatigue, 2004, 26: 1311-1319
[7] Borrego L P. Evaluation of Overload Effects on Fatigue Crack Growth and Closure[J]. Engineering Fracture Mechanics, 2003,70: 1379-1397
[8] Harmain G A. A Model for Predicting the Retardation Effect Following a Single Overload[J]. Theoretical and Applied Fracture Mechanics, 2010, 53: 80-88
[9] Manjunatha C M, Parida B K. A Model for Predicting the Overload Effects on Fatigue Crack Growth Behaviour[R]. AIAA-2003-1523
[10] Smith K V. Application of the Dissipated Energy Criterion to Predict Fatigue Crack Growth of Type 304 Stainless Steel Following a Tensile Overload[J]. Engineering Fracture Mechanics, 2011, 78: 3183-3195
[11] Ishihara S. The Effect of the R Value on the Number of Delay Cycles Following an Overload[J]. International Journal of fatigue,2008, 30: 1737-1742
[12] Heper R, Vardar O. Elastic-Plastic Material Response of Fatigue Crack Surface Profiles Due to Overload Interactions[J]. International Journal of Fatigue, 2003, 25: 801-810
[13] Elber W. The Significance of Fatigue Crack Closure[C] ∥Damage Tolerance in Aircraft Structures, 1971, ASTM STP 486: 230-242
[14] Solanki K, Daniewicz S R, Newman Jr C. Finite Element Analysis of Plasticity-Induced Fatigue Crack Closure: an Overview [J]. Engng Fract Mech, 2004, 71: 149-171
[15] Li Y Z, He J, Zhang Z P, et al. Characterizing Fatigue Crack Closure by Numerical Analysis[J]. Advanced Materials Research, 2008, 33-37: 273-278
[16] 李亚智, 张自鹏, 何静. 疲劳裂纹塑性闭合特性的数值分析方法. 固体力学学报, 2009, 30(4): 383-388 Li Y Z, Zhang Z P, He J. The Characterization of Plasticity Induced Fatigue Crack Closure Based on Numerical Analysis[J]. Chinese Journal of Solid Mechanics, 2009, 30(4): 383-388 (in Chinese)
[17] Bao Y B. Dependence of Ductile Crack Formation in Tensile Tests on Stress Triaxiality, Stress and Strain Ratios[J]. Engng Fract Mech, 2005, 72: 505-522
[18] Lemaitre J, Chaboche J L. Mechanics of Solid Materials[M]. Cambridge: Cambridge University Press, 1990: 205-240