论文:2014,Vol:32,Issue(4):517-522
引用本文:
李占科, 张旭, 冯晓强, 关晓辉. 双向飞翼超声速客机激波阻力和声爆研究[J]. 西北工业大学
Li Zhanke, Zhang Xu, Feng Xiaoqiang, Guan Xiaohui. Study on Drag and Sonic Boom of Supersonic Bi-Directional Flying Wing[J]. Northwestern polytechnical university

双向飞翼超声速客机激波阻力和声爆研究
李占科, 张旭, 冯晓强, 关晓辉
西北工业大学 航空学院, 陕西 西安 710072
摘要:
基于超声速双向飞翼构型,采用CFD方法进行阻力计算,采用F-BOOM程序进行声爆计算,研究翼型、平面形状和EFCE激波阻力优化算法对双向飞翼激波阻力和声爆的影响。计算结果表明,平底构型可以明显降低双向飞翼超声速客机的超声速巡航的声爆,却很大程度上增加了巡航阻力,而对称构型却恰好相反;细长的平面几何形状对降低双向飞翼激波阻力和声爆都有作用,尤其对降低对称构型的声爆效果明显;EFCE激波阻力优化算法对降低双向飞翼激波阻力有明显作用,但同时会带来声爆方面的不利影响。因此,超声速客机的减阻设计和低声爆设计需要进行权衡研究。
关键词:    超声速客机    双向飞翼    激波阻力    声爆   
Study on Drag and Sonic Boom of Supersonic Bi-Directional Flying Wing
Li Zhanke, Zhang Xu, Feng Xiaoqiang, Guan Xiaohui
College of Aeronautics, Northwestern Polytechnical University, Xian 710072, China
Abstract:
Based on SBiDir-FW (supersonic bi-directional flying wing ), CFD (Computational Fluid Dynamics ) method is used to calculate the drag and F-BOOM method is applied to compute the sonic boom;this study focuses on how the airfoil, flat shape and EFCE shock wave drag optimization algorithm affect the drag and sonic boom of SBiDir-FW. The results and their analysis show preliminarily that: (1 ) flat bottom configuration can reduce the cruise sonic boom of SBiDir-FW remarkably, but it greatly increases the cruising drag, while the opposite phenome-non can be detected in symmetrical configuration;(2)slender flat shape can reduce drag and sonic boom of SBiDir-FW, especially for reducing the sonic boom of symmetrical configuration;(3)EFCE shock wave drag optimization algorithm can reduce the shock wave drag of SBiDir-FW obviously, but will also bring adversely effect on sonic boom. Therefore, the balance should be weighed when considering the design of low drag and low sonic boom for supersonic aircraft.
Key words:    aerodynamic configurations    aerodynamic drag    algorithms    airfoils    angle of attack    calculations    computational fluid dynamics    design    Euler equations    flow fields    Lagrange multipliers    Mach number    mesh generation    optimization    pressure    schematic diagrams    shock waves    supersonic aircraft    wings    bi-directional flying wing    shock wave drag    sonic boom   
收稿日期: 2013-11-01     修回日期:
DOI:
通讯作者:     Email:
作者简介: 李占科(1974-),西北工业大学副教授,主要从事飞行器总体设计研究。
相关功能
PDF(375KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李占科  在本刊中的所有文章
张旭  在本刊中的所有文章
冯晓强  在本刊中的所有文章
关晓辉  在本刊中的所有文章

参考文献:
[1] National Research Council. High Speed Research Aeronautics and Space Engineering Board U. S. Supersonic Commercial Aircraft: Assessing NASA's High Speed Research Program[M]. Washington, D. C. National Academy Press, 1997
[2] 冯晓强, 宋笔锋, 李占科. 超音速客机音爆问题初步研究[J]. 飞行力学, 2010, 28(6): 21-23 Feng X Q, Li Z K, Song B F. Preliminary Analysis on the Sonic Boom of Supersonic Aircraft[J]. Flight Dynamics, 2010, 28 (6): 21-25 (in Chinese)
[3] 杨训仁, 陈宇. 大气声学[M]. 北京: 科学出版社, 2007: 256-260 Yang X R, Chen Y. Atmospheric Acoustics[M]. Beijing: Science Press, 2007: 256-260 (in Chinese)
[4] Zha G C. Toward Zero Sonic-Boom and High Efficiency Supersonic UAS: A Novel Concept of Supersonic Bi-Directional Flying Wing. U S Air Force Academic Outreach UAS Symposium, Grand Forks, ND, 2009
[5] Zha G C, Im H, Espinal D. Toward Zero Sonic-Boom and High Efficiency Supersonic Flight, Part I: A Novel Concept of Supersonic Bi-Directional Flying Wing[R]. AIAA-2010-1013
[6] Zha G C, Im H, Espinal D. Supersonic Bi-Directional Flying Wing, Part II: Conceptual Design of a High Speed Civil Transport [R]. AIAA-2010-1393
[7] 李凤蔚. 空气与气体动力学引论[M]. 西安: 西北工业大学出版社, 2007 Li F W. Introduction of Aerodynamics[M]. Xi'an, Northwestern Polytechnical University Press, 2007 (in Chinese)
[8] Siclari M. CFD Predictions of the Near-Field Sonic Boom Environment for Two Low Boom HSCT Configurations[R]. AIAA-1991-1631
[9] 冯晓强, 宋笔锋, 李占科等. 超声速飞机低声爆布局混合优化方法研究[J]. 航空学报, 2012, 34(8): 1768-1777 Feng X Q, Song B F, Li Z K, et al. Timized Approach for Low Boom Supersonic Aircraft Configuration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 34(8): 1768-1777 (in Chinese)
[10] Siclari M, Darden C. A Euler Code Prediction of Near to Mid-Field Sonic Boom Pressure Signature[R]. AIAA-1990-4000
[11] Thomas C L. Extrapolation of Sonic Boom Pressure Signatures by the Waveform Parameter Method[R]. NASA TND-6832
[12] 冯晓强. 声爆计算方法研究及在超声速客机设计的应用[D]. 西安: 西北工业大学, 2012: 43-53 Feng X Q. The Research of Sonic Boom Prediction Method and Application in Supersonic Aircraft Design[D]. Xi'an, Northwestern Polytechnical University, 2012: 43-53 (in Chinese)
[13] 飞机设计手册总编委. 飞机设计手册(第 5 册) [M]. 北京: 航空工业出版社, 2002: 11-12 Aircraft Design Manual (Volume 5) [M]. Beijing: Aviation Industry Press, 2002: 11-12 (in Chinese)
[14] 关晓辉, 宋笔锋, 李占科. 超声速翼身组合体激波阻力优化的 EFCE 算法[J]. 航空学报, 2013, 34(5): 1036-1045 Guan X H, Song B F, Li Z K. Extended Far-Field Composite Element Supersonic Wing-Body Wave Drag Optimization Method [J]. Acta Aeronauticaet Astronautica Sinica, 2013, 34(5): 1036-1045 (in Chinese)
[15] 关晓辉, 李占科, 宋笔锋. CST 气动外形参数化方法研究[J]. 航空学报, 2012, 33(4): 625-633 Guan X H, Li Z K, Song B F. A Study on CST Aerodynamic Shape Parameterization Method[J]. Acta Aeronauticaet Astronautica Sinica, 2012, 33(4): 625-633 (in Chinese)